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ABSTRACT

We propose a novel differentiable vortex particle (DVP) method to infer and pre-
dict fluid dynamics from a single video. Lying at its core is a particle-based la-
tent space to encapsulate the hidden, Lagrangian vortical evolution underpinning
the observable, Eulerian flow phenomena. Our differentiable vortex particles are
coupled with a learnable, vortex-to-velocity dynamics mapping to effectively cap-
ture the complex flow features in a physically-constrained, low-dimensional space.
This representation facilitates the learning of a fluid simulator tailored to the in-
put video that can deliver robust, long-term future predictions. The value of our
method is twofold: first, our learned simulator enables the inference of hidden
physics quantities (e.g., velocity field) purely from visual observation; secondly,
it also supports future prediction, constructing the input video’s sequel along with
its future dynamics evolution. We compare our method with a range of existing
methods on both synthetic and real-world videos, demonstrating improved recon-
struction quality, visual plausibility, and physical integrity.1

1 INTRODUCTION

As small as thin soap films, and as large as atmospheric eddies observable from outer space, fluid
systems can exhibit intricate dynamic features on different mediums and scales. However, despite
recent progress, it remains an open problem for scientific machine learning to effectively represent
these flow features, identify the underlying dynamics system, and predict the future evolution, due
to the noisy data, imperfect modeling, and unavailable, hidden physics quantities.

Here, we identify three fundamental challenges that currently hinder the success of such endeavors.
First, flow features are difficult to represent. Traditional methods learn the fluid dynamics by storing
velocity fields either using regularly-spaced grids or smooth neural networks. These approaches
have demonstrated promising results for fluid phenomena that are relatively damped and laminar
(e.g., Chu et al., 2022), but for fluid systems that can exhibit turbulent features on varying scales,
these methods fall short due to the problem’s curse of dimensionality (high-resolution space and
time), local non-smoothness, and hidden constraints. As a result, more compact and structured
representation spaces and data structures are called for.

Secondly, hidden flow dynamics is hard to learn. Fluid systems as prescribed by the Navier-Stokes
equations tightly couple multiple physical quantities (i.e., velocity, pressure, and density), and yet,
only the density information can be accessibly measured. Due to the system’s complexity, ambiguity,
and non-linearity, directly learning the underlying dynamics from the observable density space is
infeasible; and successful learning usually relies on velocity or pressure supervision, a requirement
that distances these methods from deployment in real-world scenarios.

Exciting recent progress has been made in hidden dynamics inference by PDE-based frameworks
such as Raissi et al. (2020), which uncover the underlying physics variables solely from density
observations. However, this type of methods encounter the third fundamental challenge, which
is that performing future prediction is difficult. As we will demonstrate, although strong results

1Our video results, code, and data can be found at our project website: https://yitongdeng.
github.io/vortex_learning_webpage.
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Observed real video Synthesized future prediction

Figure 1: Our goal is to learn vortex dynamics for fluid inference and prediction. The 3 frames on the left are
observed from a real video of a soap film on a circular metal rim, where the red ink is spreading. The 3 frames
on the right are future prediction results produced by our method.

are obtained for interpolating inside the observation window provided by the training data, these
methods cannot extrapolate into the future, profoundly limiting their usage.

In this paper, we propose the differentiable vortex particle (DVP) method, a novel fluid learning
model to tackle the three aforementioned challenges in a unified framework. In particular, har-
nessing the physical insights developed for the vortex methods in the computational fluid dynamics
(CFD) literature, we design a novel, data-driven Lagrangian vortex system to serve as a compact
and structured latent representation of the flow dynamics. We learn the complex dynamical system
underneath the high-dimensional image space by learning a surrogate, low-dimensional model on
the latent vortex space, and use a physics-based, learnable mechanism: the vortex-to-velocity mod-
ule, to decode the latent-space dynamics back to the image space. Leveraging this physics-based
representation, we design an end-to-end training pipeline that learns from a single video containing
only density information. Our DVP method enables accurate inference of hidden physics quantities
and robust long-term future predictions, as shown in Figure 1.

To examine the efficacy of our method, we compare our method’s performance on both motion in-
ference and future prediction against various state-of-the-art methods along with their extensions.
We conduct benchmark testing on synthetic videos generated using high-order numeric simulation
schemes as well as real-world videos in the wild. Evaluation is carried out both quantitatively
through exhaustive numerical analysis, and qualitatively by generating a range of realistic visual
effects. We compare the uncovered velocities in terms of both reconstruction quality and physical
integrity, and the predicted visual results in terms of both pixel-level and perceptual proximity. Re-
sults indicate that our proposed method provides enhanced abilities on both fronts, inferring hidden
quantities at higher accuracy, and predicting future evolution with higher plausibility.

In summary, the main technical contributions of our framework align with the three challenges
regarding flow representation, dynamics learning, and simulator synthesis. (1) We devise a novel
representation for fluid learning, the differentiable vortex particles (DVP), to drastically reduce the
learning problem’s dimensionality on complex flow fields. Motivated by the vortex methods in CFD,
we establish the vorticity-carrying fluid particles as a new type of learning primitive to transform the
existing PDE-constrained optimization problem to a particle trajectory (ODE) learning problem. (2)
We design a novel particle-to-field paradigm for learning the Lagrangian vortex dynamics. Instead of
learning the interaction among particles (e.g., Sanchez-Gonzalez et al., 2020), our model learns the
continuous vortex-to-velocity induction mapping to naturally connect the vortex particle dynamics
in the latent space with the fluid phenomena captured in the image space. (3) We develop an end-
to-end differentiable pipeline composed of two network models to synthesize data-driven simulators
based on single, short RGB videos.

2 RELATED WORK

Hidden Dynamics Inference. The problem of inferring dynamical systems based on noisy or incom-
plete observations has been addressed using a variety of techniques, including symbolic regression
(Bongard & Lipson, 2007; Schmidt & Lipson, 2009), dynamic mode decomposition (Schmid, 2010;
Kutz et al., 2016), sparse regression (Brunton et al., 2016; Rudy et al., 2017), Gaussian process re-
gression (Raissi et al., 2017; Raissi & Karniadakis, 2018), and neural networks (Raissi et al., 2019;
Yang et al., 2020; Jin et al., 2021; Chu et al., 2022). Among these inspiring advancements, the “hid-
den fluid mechanics” (HFM) method proposed in Raissi et al. (2020) is particularly noteworthy, as
it uncovers the continuous solutions of fluid flow using only images (the transport of smoke or ink).

Data-driven Simulation. Recently, growing interests are cast on learning numerical simulators ac-
cording to data supervision, which has shown promise to reduce computation time (Ladickỳ et al.,
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2015; Guo et al., 2016; Wiewel et al., 2019; Pfaff et al., 2020; Sanchez-Gonzalez et al., 2020; Tomp-
son et al., 2017), increase simulation realism (Chu & Thuerey, 2017; Xie et al., 2018), enable stylized
control (Kim et al., 2020), estimate dynamic quantities such as viscosity and energy (Chang et al.,
2016; Battaglia et al., 2016; Ummenhofer et al., 2019), and facilitate the training of control policies
(Sanchez-Gonzalez et al., 2018; Li et al., 2018). Akin to Watters et al. (2017), our system takes im-
ages as inputs and performs dynamics simulation on a low-dimensional latent space; but our method
learns purely from the input video and performs future rollout in the image space. Our method is
also related to Guan et al. (2022), which infers Lagrangian fluid simulation from observed images.
We propose sparse neural vortices as our representation while they use dense material points.

Vortex Methods. The underlying physical prior incorporated in our machine learning system is
rooted in the family of vortex methods that are rigorously derived, analyzed, and tested in the com-
putational fluid dynamics (CFD) (Leonard, 1980; Perlman, 1985; Beale & Majda, 1985; Winck-
elmans & Leonard, 1993; Mimeau & Mortazavi, 2021) and computer graphics (CG) (Selle et al.,
2005; Park & Kim, 2005; Weißmann & Pinkall, 2010; Brochu et al., 2012) communities. Xiong
et al. (2020) is pioneering for combining the Discrete Vortex Method with neural networks, but its
proposed method relies on a large set of ground truth velocity sequences, whereas our method learns
from single videos without needing the ground truth velocity.

3 PHYSICAL MODEL

We consider the velocity-vorticity form of the Navier–Stokes equations (obtained by taking the curl
operator of both sides of the momentum equation, see Cottet et al. (2000) for details):

Dω

Dt
=

∂ω

∂t
+ u · ∇ω = ω · ∇u+ ν∇2ω +∇× b, (1)

u = ∇× ϕ, ∇2ϕ = −ω, (2)
where ω denotes the vorticity, u the velocity, b the conservative body force, ν the kinematic viscos-
ity, and ϕ the streamfunction. If we ignore the viscosity and stretching terms (inviscid 2D flow), we
obtain Dω/Dt = 0, which directly conveys the Lagrangian conservative nature of vorticity (i.e., a
particle’s vorticity will not change during its advection).

If we assume the fluid domain has an open boundary, we can further obtain the vortex-to-velocity
induction formula, which is derived by solving Poisson’s equation on ϕ using Green’s method (also
known as the Biot-Savart Law in fluid mechanics):

u(x) =

∫
K(x− x′)ω(x′)dx′, (3)

The kernel K exhibits a type-II singularity at 0 and causes numerical instabilities, therefore in CFD
practices, K is replaced by various mollified versions Kδ to improve the simulation accuracy (Beale
& Majda, 1985). We note that the mollified version Kδ is not unique, and can be customized and
tuned in different numerical schemes per human heuristics. Different types and parameters for the
mollification bring about significantly different simulation results.

Takeaways. The mathematical models above provide two central physical insights guiding the design
of our vortex-based learning framework: (1) The Lagrangian conservation of vorticity ω suggests
the suitability of adopting Lagrangian data structures (e.g., particles as opposed to grids) to capture
the dynamics. Since the tracked variable ω remains temporally invariant for each Lagrangian vortex,
the evolution of the continuous flow field is embodied fully by the movement of these vortices, which
significantly alleviates the difficulty in learning. (2) Equation 3 presents an induction mapping from
the vorticity ω, a Lagrangian quantity carried by particles, to the velocity u, an Eulerian variable that
can be queried continuously at an arbitrary location x. This lends the possibility for the Lagrangian
method to be used in conjunction with Eulerian data structures (e.g., a grid) for learning from the
widely available video data. Furthermore, such a mapping can benefit from data-driven learning, as
we can replace the human heuristics by learning a mollified kernel Kδ to minimize the discrepancy
between the simulated and observed flow phenomena.

4 METHOD

System Overview. Following the physics insight conveyed in Section 3, we design a learning system
whose workflow is illustrated in Figure 2. As shown on the top row, our system takes as input a
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Figure 2: Illustration of our differentiable vortex particle (DVP) method. Given an input RGB image sequence
(top row), we learn a dynamical system on a low-dimensional vortex space (bottom row), whose motion is
decoded into the motion of the high-dimensional image space to explain the observed fluid phenomena.

single RGB video that captures the vortical flow phenomena. As shown on the bottom row, our
method learns and outputs a dynamical simulator — not on the image space itself, but on a latent
space consisting of discrete vortices. Learning the latent dynamics in the vortex space would only
be useful and feasible if we can tie it back to the image space, because it is the image space that we
want to perform future prediction on, and we have no ground truth values for the vortex particles to
begin with. The bridge to tie the vortex space with the image space derives from Equation 3, which
supplies the core insight that there exists a learnable mapping from vortex particles to the continuous
velocity field at arbitrary positions. This mapping is modeled by our learned dynamics module D,
which gives rise to the intermediate velocity space, as shown in the middle row of Figure 2.

4.1 DIFFERENTIABLE VORTEX PARTICLES

We track a collection V of n vortex particles, i.e., V := [V1, . . . , Vn]. We define each vortex Vi as
the 3-tuple (xi, ωi, δi), where x represents the position, ω the vortex strength, and δ the size. The
number of particles n is a hyperparameter which we set to 16 for all our results. Further discussions
and experiments regarding the choice of n can be found in Appendix D. We also note that, since
we are concerned with 2D inviscid incompressible flow, the size δ of a vortex does not change in
time due to incompressibility, and the vortex strength ω does not change in time due to Kelvin’s
circulation theorem (see Hald (1979) for a thorough discussion).

Learning Particle Trajectory. As shown in Figure 3, we learn a particle trajectory module: a query
function T such that Vt = T (t), which predicts the configuration of all the vortices at any time
t ∈ [0, tE ] where tE represents the end time of the input video. As described above, predicting Vt

boils down to determining two time-invariant components: (1) [ω1, . . . , ωn], (2) [δ1, . . . , δn], and one
time-varying component: [(x1)t, . . . , (xn)t]. For the two time-invariant components, we introduce
two trainable n × 1 vectors ∆ and Ω to represent δ and ω respectively, such that [ω1, . . . , ωn] =
sin(Ω) and [δ1, . . . , δn] = sigmoid(∆) + ϵ (ϵ is a hyperparameter we set to 0.03). The vortex size
∆ and strength Ω are optimized to fit the motion depicted by the input RGB video. For the time-
varying component, we use a neural network N1(t) to encode N1(t) = [(x1)t, . . . , (xn)t], and
the particle velocities dN1

dt can be extracted using automatic differentiation. We note that learning
the full particle trajectory, rather than the initial particle configuration, allows the aggregation of
dynamics information throughout the input video for better inference and prediction. We provide
further discussion on this design in Appendix F.

Trajectory Initialization. As discussed above, the trajectory T has three learnable components: ∆,
Ω and N1. We initialize ∆ and Ω as zero vectors, which gives δi = 0.5 + ϵ and ωi = 0 for all
i. Conceptually, these vortices are initialized as large blobs with no vortex strength, which learn to
alter their sizes and grow their strengths to better recreate the eddies seen in the video. The initial
positions [(x1)0, . . . , (xn)0] are regularly spaced points to populate the entire domain. We initialize
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Figure 3: We encapsulate the motion of a continuous field by the motion of discrete particles. The blue trajec-
tory is encoded by a neural network N1, corresponding to the input video; while the red trajectory is unrolled
using our learned dynamics module and a numeric integrator, corresponding to the future prediction.

the 16 particles to lie at the grid centers of a 4 × 4 grid. To do so, we simply pretrain N1 so that
N1(0) evaluates to the grid centers. The details regarding pretraining are given in Appendix A.

Learning the Vortex-to-Velocity Mapping. The vortex-to-velocity mapping is performed by our dy-
namics module D, which predicts the velocity u at an arbitrary query point x given the collection of
vortices V = [(x1, ω1, δ1), . . . , (xn, ωn, δn)]. Following the physical insight conveyed in Section 3,
D should evaluate the integration:

u(x) =

∫
Kδ(x− x′)ω(x′)dx′, (4)

which replaces the kernel K in Equation 3 by a learnable mapping Kδ : Rd → Rd, with d repre-
senting the spatial dimension. Rather than directly using a neural network to model this Rd → Rd

mapping, we incorporate further physical insights by analyzing the structure of Kδ . As derived in
Beale & Majda (1985), the kernel Kδ for 2-dimensional flow exhibits the following form:

Kδ(z) =
1

2πr
M(r, δ)R 2

π
(z), r = |z| (5)

where R 2
π
(z) computes the unit direction of the cross product of z and the out-of-plane unit vector;

and M(r, δ) is the human heuristic term that varies by choice. Hence, we opt to replace 1
2πrM(r, δ)

by a R2 → R neural network function N2(r, δ) so that:

u(x) =

∫
N2(|x− x′|, δi)R 2

π
(x− x′)ω(x′)dx′ (6)

≈
n∑

i=1

N2(|x− xi|, δi)R 2
π
(x− xi)ωi = D(V)(x). (7)

Learning this induction kernel N2(r, δ) instead of using heuristics-based kernels allows for more
accurate fluid learning and prediction from input videos. We discuss more on this in Appendix E.

4.2 END-TO-END TRAINING

As previously mentioned, the dynamics on the latent vortex space is bridged to the evolution of the
image space through the differentiable, dynamics module D. Hence, we can optimize the vortex
representation Vt = T (t) at time t using images as supervision. First, we select m + 1 frames:
[It, . . . , It+m] from the video. Then, we compute ut = D(Vt). After that, (ut, It) is fed into an
integrator on the Eulerian grid to predict Ĩt+1. Simultaneously, (ut,Vt) is fed into an integrator
on the Lagrangian particles to predict Ṽt+1. The process is then repeated, using Ĩt+1 in place
of It and Ṽt+1 in place of Vt, to generate Ĩt+2 and Ṽt+2, and so on. Eventually, we would obtain
[Ĩt+1, . . . , Ĩt+m], which are the predicted outcome starting at time t. We optimize T and D jointly by
minimizing the difference between [Ĩt+1, . . . , Ĩt+m] and [It+1, . . . , It+m] in an end-to-end fashion.

By picking different values of t in each training iteration to cover [0, tE ], we optimize T and D to
fit the input video. There remains one more caveat — which is that the trajectories encoded with
T are not enforced to be consistent with D, because each frame of Vt is optimized individually.
In other words, if we evaluate the particle velocities [ẋ1, . . . , ẋn] =

dN1

dt as prescribed by T , it
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OursHFM Extrap. HFM + UNet ER + UNet OursHFM Extrap. HFM + UNet ER + UNet
Figure 4: Applied to real-world videos, our DVP method can create more realistic future predictions over long
periods of time compared to existing methods (and their extensions).

Velocity
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Velocity
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Ground Truth HFME-R UNet Ours
Figure 5: Hidden motion inference compared with existing methods on a synthetic video. Our DVP method
uncovers the underlying velocity field at higher accuracy.

should coincide with [D(V)(x1), . . . ,D(V)(xn)], as prescribed by D. Hence, in training, another
loss is computed between dN1

dt and [D(V)(x1), . . . ,D(V)(xn)] to align the vortex trajectory and
the predicted velocity.

Deployment. After successful training, our learned system performs two important tasks. First, us-
ing our query function T (t), we are able to temporally interpolate for Vt, which then uncovers the
hidden velocity field u = D(Vt) at arbitrary resolutions, providing the same functionality as Raissi
& Karniadakis (2018), but using vorticity instead of pressure as the secondary variable. Moreover,
with the dynamics module D, we can perform future prediction to unroll the input video, a feature
unsupported by previous methods. As shown in Figure 4, since our method is forward-simulating
by nature, it can provide more realistic and robust future predictions than existing methods or their
extensions. Further implementation details of our method, including hyperparameters, network ar-
chitectures, training schemes, and computational costs can be found in Appendix A.

5 EXPERIMENTS

We evaluate our method’s ability to perform motion inference and future prediction on both synthetic
and real videos, comparing against existing methods.
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Figure 6: Error analysis on a synthetic video. The top row plots the inference errors of velocity, vorticity, and
compressibility. The bottom row plots the future prediction errors, which consider both the dynamics error of
the velocity and the perceptual error of the generated image sequence.

Baselines. For motion inference, we compare our method against Raissi & Karniadakis (2018)
(HFM) and Zhang et al. (2022) (E-R). We reimplement the HFM method as prescribed in the paper,
making only the modification that instead of using only a single concentration variable c and its
corresponding variable d := 1 − c, we create three (c, d) pairs for each of the RGB channel for
the support of colored videos. The E-R method is evaluated using the published pretrained models.
We further compare against an ablated version of our proposed method, termed “UNet”, which es-
sentially replaces the Lagrangian components of the system with a UNet architecture (Ronneberger
et al., 2015), a classic method for learning field-to-field mappings. The UNet baseline takes two im-
ages It and It+1 and predicts a velocity field ut+1 to predict It+2 using the same Eulerian integrator
as our method. For future prediction, there do not exist previous methods that operate in comparable
settings, so we extend the inference methods in a few ways to support future prediction in a logical
and straightforward manner. First, since HFM offers a query function parameterized by t, we test its
future prediction behavior by simply extrapolating with t > tE ; this is referred to as “HFM extp.”.
Since both Raissi & Karniadakis (2018) and Zhang et al. (2022) uncover the time-varying velocity
field, we use a UNet to learn the evolution from ut to ut+1, and use this velocity update mechanism
to perform future prediction. The two baselines thus obtained are referred to as “HFM+UNet” and
“E-R+UNet” respectively. Our method’s ablation “UNet” supports future prediction intrinsically.

5.1 SYNTHETIC VIDEO

The synthetic video for vortical flow is generated using the Discrete Vortex Method with a first-
order Gaussian mollifying kernel M (Beale & Majda, 1985). The high-fidelity BFECC advection
scheme (Kim et al., 2005) with Runge-Kutta-3 time integration is deployed. The simulation advects
a background grid of size 256 × 256, with a time step dt = 0.01 to create 300 simulated frames.
Only the first 100 frames will be disclosed to train all methods, and future predictions are tested and
examined on the following 200 frames.

Motion Inference. The results for the uncovering of hidden dynamic variables are illustrated in
Figure 5 and Figure 6. Shown in Figure 5 are the velocities uncovered by all 4 methods against the
ground truth, at frame 55 of the synthetic video with 100 observed frames. The velocity is visualized
in the forms of colors (top row) and streamlines (middle row), while the velocity residue, measured
in end-point error (EPE), is depicted on the bottom row. It can be seen that HFM, UNet, and our
method achieve agreeing results, all matching the ground truth values at high accuracy. On the
bottom row, it can be seen that as compared to HFM and UNet, our method generates the inference
velocity that best matches the unseen ground truth.

The inference results over the full 100 frames are depicted at the top of Figure 6. We evaluate
the velocity with four metrics: the average end-point error (AEPE), average angular error (AAE),
vorticity RMSE and compressibility RMSE. From all 4 metrics, it can be seen that our method
outperforms the baselines consistently. The time-averaged data for all four metrics are shown on the
left of Table 1, which deems our method favorable for all metrics used.

Future Prediction. In Figure 7, we visually compare the future prediction results (from frame 100 to
frame 299) using our method and the 4 benchmarks against the ground truth. It can be seen that the

7



Published as a conference paper at ICLR 2023

OursUNetGround Truth HFM Extrap. HFM + UNet ER + UNet

t = 1.00

t = 2.32

t = 1.66
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Figure 7: Future prediction of our DVP method compared to baselines methods. Our method accurately predicts
the unseen, future sequence that is twice as long as the seen sequence.

Time-averaged Inference Errors Time-averaged Prediction Errors

AEPE AAE Vort. Div. VGG RMSE AEPE AAE Vort. Div.

E-R 0.505 1.393 8.470 2.319 +UNet 4.346 0.205 0.631 1.424 12.84 6.580

HFM 0.100 0.212 3.949 0.202
+UNet 4.258 0.205 0.720 1.062 36.73 10.41
Extp. 4.080 0.285 0.541 1.464 7.761 4.315

UNet 0.048 0.100 1.799 1.145 4.530 0.211 0.424 1.159 7.334 3.017

Ours 0.020 0.041 0.976 0.053 2.010 0.080 0.048 0.096 1.621 0.043

Table 1: Error analysis of benchmark testing on a synthetic dataset.

sequence generated by our method best matches the ground truth video, capturing the vortical flow
structures, while the other baselines either quickly diffuse or generate unnatural, hard-edged pat-
terns. Numerical analysis confirms these visual observations, as we compare the 200 future frames
in terms of both velocity and visual similarity. The velocity analysis inherits the same 4 metrics,
and the visual similarity is gauged using the pixel-level RMSE and the VGG feature reconstruction
loss (Johnson et al., 2016). The time-averaged results of all 6 metrics are documented on the right
of Table 1, and the time-varying results are plotted on the bottom of Figure 6. It can be concluded
from the visual and numerical evidence that our method outperforms the baselines in this case.

5.2 REAL VIDEO

A similar numerical analysis is carried out on a real video published on YouTube, as shown in Fig-
ure 8. The video has 150 frames: the first 100 frames will be used for training, while the remaining
50 frames will be reserved for testing. Since the ground truth velocities for the real video are in-
tractable, we will only analyze the future-predicting performance. For all methods, we perform
future prediction for 150 frames; among these, the first 50 frames will be compared with the original
video, and the rest (100 frames) will be evaluated visually and qualitatively. Since only part of the
video is fluid (within the circular rim), we pre-generate a signed distance field for all methods, so
that only the fluid regions are considered in learning and simulation. The same boundary condition
is employed for all methods (except for “HFM extp.” which requires no advection).

The numerical analysis for the first 50 predicted frames is documented and plotted in Table 2 and
Figure 9. We compare our method against the baselines based on the VGG perceptual loss for
visual plausibility, and the velocity divergence (which should in theory be 0 for incompressible fluid)
for physical integrity. It can be seen that our method prevails on all metrics used. For prediction
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OursUNetGround Truth HFM Extrap. HFM + UNet ER + UNet

t = 1.00

t = 1.98
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Figure 8: Future prediction of our DVP method compared to baseline methods on a real video sequence.
Our method generates a predicted sequence that best matches the input video within its duration, and remains
visually plausible way beyond its duration.

Figure 9: Error plots corresponding to Figure 8.

VGG
(avg.)

VGG
(final)

Div.
(avg)

E-R 2.095 2.205 2.046
HFM+UNet 2.151 2.231 0.940
HFM Extp. 2.980 3.271 1.922
UNet 2.111 2.088 1.447
Ours 2.093 2.045 0.318

Table 2: Time-averaged errors for Figure 8.

results that exceed the duration of the real video, qualitative observations can be made: our method
preserves the vortical structures and generates smooth visualizations over the entire time horizon,
while other methods end up yielding glitchy patterns.

We perform additional quantitative benchmark testings in Appendix B against a differentiable grid-
based simulator on real and synthetic videos; and in Appendix C against 4 baselines on another
synthetic video featuring different visual and dynamical distributions.

6 CONCLUSION & LIMITATIONS

In this work, we propose a novel data-driven system to perform fluid hidden dynamics inference and
future prediction from single RGB videos, leveraging a novel, vortex latent space. The success of
our method in synthetic and real data, both qualitatively and quantitatively, suggests the potential for
embedding Lagrangian structures for fluid learning. Our method has several limitations. First, our
vortex model is currently limited to 2D inviscid flow. Extending to 3D, viscous flow is an exciting
direction, which can be enabled by allowing vortex strengths and sizes to evolve in time (Mimeau &
Mortazavi, 2021). Secondly, our vortex evolution did not take into account the boundary conditions
in a physically-based manner, hence it cannot accurately predict flow details around a solid bound-
ary. Incorporating learning-based boundary modeling may be an interesting exploration. Thirdly,
scaling our method to handle turbulence with multi-scale vortices remains to be explored. We con-
sider two additional directions for future work. First, we plan to explore the numerical accuracy of
our neural vortex representation to improve the current vortex particle methods for scientific com-
puting. Secondly, we plan to combine our differentiable simulator with neural rendering methods to
synthesize visually appealing simulations from 3D videos.
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A IMPLEMENTATION DETAILS

In this section, we describe the implementation details of our proposed method.

Integrators. As described above and illustrated in Figure 2, our system embeds two differentiable
integrators in the loop. The Eulerian integrator is implemented using the Back and Forth Error
Compensation and Correction (BFECC) (Kim et al., 2005) method for value look-up, and the 3rd

order Runge-Kutta method for time-stepping. The Lagrangian integrator is implemented using the
Forward Euler method.

Network N1. The network N1 adopts a series of 3 residue blocks with increasing widths
[64, 128, 256], whose architecture is similar to He et al. (2016) but with convolution layers replaced
by linear layers with sine activation functions. The frequency factor ω0 discussed in Sitzmann et al.
(2020) is set to 1.

Network N2. The network N2(r, δ) is structured as follows. First, the input r is scaled by the input δ
as r̄ = r · η

δ , where η is a hyperparameter that corresponds to the characteristic scale of the vortices.
Then, r̄ is transformed into r̂ as r̂ = r̄0.3, a reparametrization that stretches the value r̄ near 0. This
exploits the insight that the velocity varies more aggressively near a vortex. The value r̂ is then fed
through 4 residue blocks, which are the same as in N1 but with a shared width of 40. The output
from these residue blocks is scaled by multiplying with η

δ . The scaled value is the output of N2(r, δ),
which is used for the velocity computation according to Equation 7.

Training details. Both the image loss and the velocity alignment loss are MSE, and the velocity
alignment loss has an extra scaling factor of 0.001. We use the Adam optimizer with β1 = 0.9,
β2 = 0.999, and learning rates 0.0003, 0.001, 0.005, and 0.005 for N1, N2, Ω and ∆ respectively.
We use a step learning rate scheduler and set the learning rate to decay to 0.1 of the original value at
iteration 20000. We use a batch size of 4, so for each iteration, 4 starting times are picked uniformly
randomly among [0, 1, . . . , tE ] for evaluation. The sliding-window size m is set to 2.

Pretraining N1. We pretrain N1 for 10000 iterations with 2 objectives: (1) for all t ∈ [0, tE ],
N1(t) = [(x1)t, . . . , (xn)t] coincide with the centers of a 4×4 grid, (2) for all t ∈ [0, tE ], dN1

dt = 0,
so that these particles are initialized to be stationary. We use MSE for the positional and velocity
losses, and the other training specifications are the same as described above.

Computational performance. Running on a laptop with Nvidia RTX 3070 Ti and Intel Core i7-
12700H, our model takes around 0.4s per training iteration, and around 40000 iterations to converge
(for a 256× 256 video with 100 frames). For inference, each advance step costs around 0.035s.

B COMPARISON WITH DIFFERENTIABLE FLUID SIMULATION

We compare our method qualitatively and quantitatively against a standard, grid-based differentiable
fluid simulator (referred to as Diff-Sim) on both synthetic and real videos. This baseline method is
an auto-differentiable implementation of the method proposed by Fedkiw et al. (2001), which is a
classic, widely-adopted numerical method for simulating vortical fluids. The method is designed to
solve the 2D Euler equations for inviscid fluid, hence it can in theory recreate the inviscid fluid phe-
nomena represented by any video if provided with the appropriate initial conditions and simulation
parameters.

Therefore, in this experiment, we make use of its differentiable nature to optimize (1) the initial grid
velocities (a 256 × 256 × 2 tensor), and (2) the vorticity confinement strength, which is a scalar
value, with the objective of minimizing the discrepancy between the simulated results and the input
video. The loss computation between the simulated image sequence and the ground truth is the
same as in our method. We note that the idea of optimizing initial conditions using differentiable
fluid simulation to fit specific target frames has been explored in Hu et al. (2020). However, their
task is notably simpler than ours, since they only require the simulated image to match a target frame
at the end of the simulation, while our goal is to match the underlying motion of the entire video,
and dynamically unroll into the future.

Comparison on a synthetic video. We start by comparing both methods on a synthetic video with 300
frames (the first 100 observed for training, the last 200 reserved for testing), which yields a visual
comparison that can be found in Figure 10. We observe that our method successfully learns the
dynamics represented in the video: the generated video and velocities closely resemble the ground

13



Published as a conference paper at ICLR 2023

t = 0.00 t = 3.00Observed Past Predicted Future

Differentiable 
Fluid 

Simulation

Ours

Ground 
Truth

t = 0.00 t = 3.00Inferred Past Velocity Predicted Future Velocity

Differentiable 
Fluid 

Simulation

Ours

Ground 
Truth

Figure 10: Visual comparison between a differentiable grid-based simulator and ours on a synthetic video. The
upper half displays the simulated image, while the lower half displays the underlying velocity, whose color
wheel is depicted. On the bottom row of each half is the ground truth sequence, which has 300 frames. The
first 100 frames are available for both methods to learn from, while the rest are unseen during training.

Synthetic Test Errors Real Test Errors

Figure 11: Error plots of the comparison between Diff-Sim and our DVP method on a synthetic dataset.

truth even in the unseen frames. Diff-Sim, on the other hand, shows a weak resemblance with the
ground truth for the seen frames, but fails to capture the individual eddies in the video. Consequently,
it fails to predict the future dynamics. Diff-Sim’s lack of correspondence to the dynamics of the
ground truth is also made evident in Figure 13. The result clearly suggests that our method has
better learned the dynamical evolution. This performance discrepancy is numerically supported by
the errors documented on the left panel of Table 3 and plotted on the left panel of Figure 11, both
showing that our method yields reduced image-level and velocity-level errors compared to Diff-Sim.

Comparison on a real video. We then use the same experimental setup to perform learning on a
real video with 139 frames (the first 93 observed for training, the last 46 reserved for testing), as
depicted in Figure 12. We observe that on the real video, the same behavioral patterns for both
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Figure 12: Comparison between Diff-Sim and our method on a real video.

Synthetic Video Errors Real Video Errors

AEPE AAE Vort. RMSE VGG VGG (avg.) VGG (final)

Diff-Sim (Grid) 0.469 0.953 24.43 0.157 26043 15076 18792
Ours 0.041 0.081 1.482 0.055 2171.4 7846.2 11081

Table 3: Error comparison between Diff-Sim and our method on synthetic and real videos.

systems on the synthetic one have carried over. For the results generated by Diff-Sim (top row), we
can see that the overall, large-scale motion (the large eddy moving towards bottom-left) is faintly
identifiable. Nevertheless, all the smaller vortices are missing, and the entire image quickly diffuses
as the simulation proceeds. This can be attributed to the numerical diffusion issues innate to grid-
based simulations, as well as the lack of embedded fluid structures. In comparison, our method
well-preserves the vortical movements due to its built-in structure, and produces a plausible future
rollout extending beyond the duration of the original video. Although both systems are unable to
perfectly model the exact mechanism that governs this real-world video (due to unmodeled factors
such as fluid viscosity, air friction, and 3-dimensional forces), our proposed method does a better job
of retaining the vortical patterns and energetic flows thanks to its vorticity-based formulation and the
Lagrangian-Eulerian design, as can be observed in the middle row of Figure 12. The advantage of
our system over Diff-Sim on the real video is numerically supported, as shown on the right panels of
Table 3 and Figure 11. Since we do not have the ground-truth velocities for real videos, we compare
the VGG perceptual loss (Johnson et al., 2016) between the simulated sequence of both methods
and the real video, which demonstrates quantitatively that our generated results better resemble the
input video than those generated by the baseline.

C ADDITIONAL BENCHMARK TESTING

As depicted in Figure 14, to further illustrate our method’s advantage and generalizability, we have
conducted an additional set of numerical tests on another synthetic video (of 180 frames with the
first 60 revealed for training), and compared our method’s performance with 4 benchmarks in terms
of both velocity inference quality and future prediction quality. The ground truth data is generated
using a significantly different background image (sharp color tiles vs. smooth color gradients), and
a different velocity kernel (second-order Gaussian kernel vs. first-order Gaussian kernel) (Beale &
Majda, 1985). The experimental setup is otherwise the same as the one presented in the main text
(in Figure 7), with the same compared benchmarks.

The comparison of the velocity inference quality can be found in Figure 16 and the top panel of
Figure 15. Figure 16 depicts the uncovered velocities of frame 40 (among the 60 input frames)
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Figure 13: Comparing the quality of the velocity predicted by our method and Diff-Sim. We show the predicted
velocity (of frame 200) in three different forms (color, streamline, and quiver plots) in addition to the residue
(end-point error) compared to the ground truth velocity.

OursUNetGround Truth HFM Extrap. HFM + UNet ER + UNet

t = 0.60

t = 1.4

t = 1.0

t = 1.8

Figure 14: Future prediction results: our method compared to the baselines on a synthetic video.

by all 4 methods compared to the ground truth. The top row depicts the respective velocities in
colors with the color wheel supplied; the middle row depicts the velocities in streamlines; and the
bottom row depicts the velocity residues compared to the ground truth, measured in end-point error
(EPE). As with the results in Figure 5, we can see that HFM, UNet, and our method can all infer
the underlying velocity field at high precision, whereas E-R yields a visibly noisier approximation.
As seen on the bottom row, the inference performance of UNet and Ours are very close, but our
method takes the slight edge with an average error (AEPE) of 0.0143, which is 33.49% less than the
error of 0.0215 yielded by UNet. The advantage of our method is not unique to the specific frame
selected. As plotted on the top row of Figure 15, it can be seen that our method (red) consistently
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Figure 15: Error analysis on a second synthetic video. The top row plots the inference errors of velocity,
vorticity, and compressibility. The bottom row plots the future prediction errors, which consider both the
dynamic error of the velocity and the perceptual error of the generated image sequence.

Velocity

Stream-
lines

Velocity
Residue

Ground Truth HFME-R UNet Ours
Figure 16: Baseline comparison of velocity inference on a synthetic video. Our method recovers the underlying
velocity field with the highest accuracy.

yields the lowest velocity-inference error throughout the 60 input frames, in terms of the average
end-point error (AEPE), average angular error (AAE), vorticity RMSE and compressibility RMSE.
The time-averaged errors of these metrics are documented in Table 4, which again shows that our
method yields the best estimations.

Future prediction. We also compare our method’s future prediction results with the baselines. In
Figure 14, we show a visual comparison of all 5 methods against the ground truth. It highlights
the close resemblance of our generated sequence with the ground truth, which is twice as long as
the sequence used for training. Compared to the baselines, our method yields the best match to the
ground truth video, capturing the accurate vortical flow structures. HFM+UNet, E-R+UNet, and
UNet can generate reasonable future predictions up to t = 1.0 (for 40 frames). For t > 1.0, these
sequences start to distort in different ways, due to their lack of physical structures and constraints.
The direct extrapolation of HFM yields the least plausible results, quickly degrading to noise. We
compare these sequences quantitatively using the 4 velocity-based metrics, along with the 2 image-
based metrics: the pixel-level RMSE and the VGG feature reconstruction loss. Four of these time-
dependent errors are plotted in the bottom row of Figure 15, with their time-averaged counterparts
documented on the right of Table 4. In summary, we observe that our method outperforms the
existing baselines for this video both quantitatively and qualitatively.
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Time-averaged Inference Errors Time-averaged Prediction Errors

AEPE AAE Vort. Div. VGG RMSE AEPE AAE Vort. Div.

E-R 0.229 0.805 4.380 1.750 +UNet 8138.8 0.178 0.272 1.115 4.694 2.504

HFM 0.038 0.097 3.001 0.533
+UNet 9389.5 0.146 0.201 0.715 10.58 3.199
Extp. 40967 0.166 0.293 1.221 4.862 3.152

UNet 0.026 0.101 1.013 0.895 7721.3 0.170 0.330 1.141 5.462 1.496

Ours 0.015 0.046 0.480 0.015 2045.0 0.097 0.057 0.173 1.547 0.013

Table 4: Time-averaged errors of our method compared to various baselines on a synthetic video.

D NUMBER OF VORTEX PARTICLES

In our proposed method, we use n vortex particles to learn fluid dynamics. However, we note that
vortices are not intrinsic to fluid phenomena, but are rather imposed constructs to allow fluids to
be better understood conceptually and modeled numerically. Thus, the number of vortices n is
fundamentally a hyperparameter that does not admit a uniquely-correct value.

With this in mind, we let n̂ denote the minimum number of particles that can be used to model
the fluid system to an acceptable accuracy. This natural number n̂ surely exists since it has been
proven that vortex particle methods converge to the exact solution of the 2D Euler Equations (Beale
& Majda, 1985; Hald, 1979). We are mostly concerned with the cases where n > n̂, which means
the number of deployed degrees of freedom (DoFs) is greater than the number necessary for the
given fluid system. In the following section, we show that our method can spontaneously prune the
redundant vortices and thus it is robust to a reasonable range of n > n̂. In Figure 17, we show the
results of learning the same underlying motion with 4, 9, and 64 vortex particles. In Figure 18, we
show the underlying velocity and vorticity fields using different numbers of vortex particles.

Spontaneous pruning of redundant DoFs. As shown on the top row of Figure 17, the ground truth is
generated with 4 vortices, so it is safe to assume that n̂ = 4. Learning with 4 vortices (as shown on
the second row) represents the case where n = n̂. Comparing the first row with the second row, we
can see that there is a one-to-one correspondence between the ground-truth vortices and the learned
vortices, with each learned vortex assuming the role of one individual ground-truth vortex (obtaining
the same vorticity and initial position).

When we have 9 vortices (third row), there are more vortex particles than those in the ground truth.
In this case, two interesting phenomena occur to spontaneously prune these redundant particles: de-
generation and clustering. First, some particles degenerate themselves by reducing their strengths
to 0 or by moving farther away from the domain. We can observe both mechanisms taking place
on the two lingering particles on the top part of the third row. They both have low strengths (evi-
dent from their turquoise color) and are peripheral to the domain. Secondly, multiple particles can
aggregate to emulate a single particle with greater strength. Since the velocity computation is a
distance-weighted summation (as in Equation 7), if multiple particles coincide at the same location,
they effectively act as one single particle with their vorticities added together. This phenomenon can
be observed by comparing the lower halves of the second and third rows. Both of these mechanisms
enable our system to spontaneously prune redundant vortices. In the last row, we show that our
method is robust to even 64 vortices.

Figure 19 helps to illustrate this spontaneous pruning mechanism by showing different snapshots of
the training process. Shown on the left are the vortex particles’ behaviors soon after the training has
begun. It is particularly noticeable that, on the bottom row, the 64 particles are scattered throughout
the fluid domain, and the simulated result appears quite different from the ground truth. Moving
from left to right, these particles become more and more clustered around the flow regions, with
much fewer “freelance” particles, and the end result can approximate the ground truth much better.

Finally, we note that n < n̂ is still challenging to resolve as the system would be over-constrained.
Nevertheless, we empirically find that n = 16 is sufficient for all the real and synthetic videos we
consider in our experiments.
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Figure 17: The same underlying motion learned with different numbers of vortex particles. The ground truth
has 100 frames; the first 30 frames are observed during training, and the remaining 70 frames are predicted.
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Figure 18: Robustness of our DVP method against different numbers of vortices used. Different numbers of
vortices can represent similar underlying dynamics.

E ABLATION: LEARNABLE VELOCITY KERNEL

In traditional vortex simulation applications in Computer Graphics and Computational Fluid Dy-
namics, the velocity kernel is hand-selected (typically from Gaussian kernels of different orders)
with a uniform support radius (size). Such approaches are designed to perform forward simulation,
yet they are limiting when used for backward inference tasks, i.e., to reconstruct input videos. In our
method, we address this issue by learning neural kernels with learnable sizes. By leveraging data-
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Figure 19: The training evolution when using different numbers of vortex particles.
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Figure 20: Ablation study: reconstruction and prediction on a real video with learnable velocity kernels (our
full method) and without learnable velocity kernels (ablation).

driven techniques, we can reconstruct and predict fluid flows that not only are visually pleasing, but
also resemble the specific dynamical traits embodied in the input video.

In Figure 20, we present an ablation study on the learnable velocity kernels. We reconstruct and
predict a real-world video using our method and an ablated version in which the learnable kernel is
replaced with a hard-coded first-order Gaussian kernel with uniform size. The ground truth, shown
on the bottom row, has 126 frames revealed for training and 62 frames hidden for testing. In the
middle row, we learn to fit the video with our learnable kernel enabled. In the top row, we learn
to do the same with the learnable kernel disabled. It can be observed that the middle row well-
captures the characteristic smoothness of the flow, and simulates an image sequence that resembles
the ground truth. The ablated version (top row) can also learn the correct overall motion (clockwise
rotation), but it induces various smaller eddies and wrinkles uncharacteristic of the input video.
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Figure 21: Time-varying losses corresponding to Figure 20.

VGG
(avg.)

VGG
(final)

RMSE
(avg)

Ours w/o
learnable
kernels

9698.7 11240 0.183

Ours 7365.6 10027 0.180

Table 5: Time-averaged errors of Figure 21.

t = 0.00 t = 1.80
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Ours

Ground 
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t = 0.00 t = 1.80
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Trajectory 
Learning

Ours

Ground 
Truth

Figure 22: We compare our method against its ablated version which does not have the feature trajectory
learning. The top depicts the simulated images, and the bottom depicts the simulated velocities. The results of
both approaches are compared to the ground truth.

Extending to unseen frames, our method can continue to retain the overall structure of the eddies,
while the ablated version (without the learnable kernel) drives the pattern to disintegrate, and devel-
ops various folds and wrinkles that do not resemble the dynamical characteristics of the real video.
We further show quantitative results plotted in Figure 21 and documented in Table 5. In summary,
learning the velocity kernels allows for better reconstruction and prediction of fluid flow specific to
the input video.

F ABLATION: TRAJECTORY LEARNING

In our approach, we learn the full trajectories of vortex particles for the input video. An alternative is
to learn the initial condition only. However, we find that the former option is more computationally
tractable and effective, since it can exploit the full range of the input video at a manageable cost.
To see this, suppose we have 100 training frames in the video, and the goal is to infer the initial
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Velocity Errors Image Errors

AEPE AAE Vort. Div. RMSE VGG

Ours (Ablated) 0.257 0.753 4.689 0.054 0.170 6759.4
Ours 0.043 0.131 1.180 0.014 0.081 1805.9

Table 6: Time-averaged velocity-level and image-level errors by our method and its ablated version without
trajectory learning.

Figure 23: Time-varying velocity-level and image-level errors by our method and its ablated version without
trajectory learning.

condition at frame-1. If we directly optimize the initial condition using the last frame, we need to
simulate from frame-1 all the way to frame-100, compute the loss and backpropagate. Unrolling
such a long sequence for each training iteration (1) takes a long time, (2) leads to noisy gradients,
and (3) is practically infeasible due to memory constraints. On the other hand, learning the whole
trajectory allows us to address these challenges by using a smaller sliding window in time (e.g.,
simulating only 3 frames at a time) and aggregating the dynamics information throughout the whole
video. In Figure 22, we show a comparison of both methods in action, with a total of 180 simulated
frames. On the top panel, we show the reconstruction and prediction results for both our full method
and an ablated version where we directly learn the initial condition. Note that the ablated version
can only unroll the first 13 frames (and thus is learned using only the input video’s first 14 frames)
due to the memory constraint (which is consistent for both candidates). In contrast, our full method
can handle the 60 input frames like in the setup of Appendix C. On the bottom panel, we show
the velocity corresponding to the top panel. We observe that our method and its ablated version
can approximate the ground truth reasonably well at the beginning of the simulation (the left three
images). However, the ablated version starts to distort significantly in terms of both the advected
image and the underlying velocity. This observation is in agreement with the numerical evidence,
as plotted in Figure 23 and documented in Table 6, which shows that our full method consistently
outperforms its ablated counterpart across all metrics. We conjecture that the underlying reasons
for this performance discrepancy are threefold: first, the ablated version can only learn from the
beginning section of the fluid observation, which provides limited information to correctly infer the
initial condition. Secondly, only learning the initial condition is more susceptible to accumulated
errors than our full method. Thirdly, using a limited number of frames makes it harder to synthesize
an appropriate velocity kernel. In summary, our observations suggest that learning the full trajectory
is more desirable than learning the initial condition only.
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