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Fig. 1. The dynamic formation of a double-bubble with intricate flow patterns, simulated by our proposed method. With the appropriate treatment of surface
tension near the junction, two bubbles spontaneously settle into meeting angles of ≈ 120◦ , recovering what is known as the Plateau border.

We present the Moving Eulerian-Lagrangian Particles (MELP), a novel mesh-
free method for simulating incompressible fluid on thin films and foams.
Employing a bi-layer particle structure, MELP jointly simulates detailed, vig-
orous flow and large surface deformation at high stability and efficiency. In
addition, we design multi-MELP: a mechanism that facilitates the physically-
based interaction between multiple MELP systems, to simulate bubble clus-
ters and foams with non-manifold topological evolution. We showcase the
efficacy of our method with a broad range of challenging thin film phenom-
ena, including the Rayleigh-Taylor instability across double-bubbles, foam
fragmentation with rim surface tension, recovery of the Plateau borders,
Newton black films, as well as cyclones on bubble clusters.
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1 INTRODUCTION
Fluid thin films: soap lamellae, bubble clusters, and foam networks,
exhibit remarkably complex geometry and dynamics due to the cou-
pled interaction between the interfacial flow, surface deformation,
and topological evolution. On the level of lamellae, these fluid sys-
tems are intriguing for their sophisticated, swirling color patterns
jointly created by the turbulent flow dynamics and light interfer-
ence [Belcour and Barla 2017; Glassner 2000; Iwasaki et al. 2004;
Jaszkowski and Rzeszut 2003; Smits and Meyer 1992]. On the level
of foams, surface tension evolves these liquid lamellae into topo-
logically complicated networks with meticulously-connected, non-
manifold borders according to Plateau’s laws [Kraynik et al. 2004;
Rosen and Kunjappu 2012; Saye and Sethian 2013; Thomas et al.
2015; Weaire and Phelan 1996]. The interleaving complexities be-
tween both levels render the full-scale simulation of incompressible
fluid on thin films and foams particularly challenging.

The challenge of simulating thin films and foams can be divided
into three aspects — the 1) turbulent flow, 2) deforming geometry, and
3) evolving, non-manifold topology. Tackling these demanding tasks,
a vast literature in computer graphics and computational physics
has been devoted to devising effective geometric data structures and
PDE solvers to capture the vivid flow details on dynamic membranes.
For instance, researchers have constructed numerical algorithms to
generate highly detailed surface flow on fixed spherical domains
[Hill and Henderson 2016; Huang et al. 2020; Yang et al. 2019], to
model the topological evolution of foams using dynamic meshes
[Ishida et al. 2020, 2017], and to simulate bubble deformation and
burstingwith particles [Wang et al. 2020, 2021]. Despite the inspiring
progress, developing an integrated algorithm that can jointly 1)
capture the surface flow details at a high (pixel-level) resolution and
2) accommodate the complex geometric and topological evolution,
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remains a recalcitrant technical gap that hinders thin film/foam
simulation from advancing to the next level of visual authenticity.

Responding to these multifaceted challenges, we design the Mov-
ing Eulerian-Lagrangian Particle (MELP) method: a novel, mesh-free
method that can stably and efficiently simulate 1) complex, turbulent
flow at a high level of detail, 2) aggressive shape deformation under
surface tension, and 3) accurate evolution of non-manifold topolo-
gies according to Plateau’s laws. Our system is powered by two core
innovations. First, we discretize fluid thin films using two collabo-
rating particle sets: a sparse set of Eulerian particles for dynamic
interface tracking and PDE solving, and a fine set of Lagrangian par-
ticles for material and momentum transport. This separation of tasks
between deformation tracking and flow tracking enables enhanced
performance on both fronts. The Eulerian particles can maintain a
stable, uniform discretization despite the turbulent surfacial flow,
as they can advect only with normal velocities, and freely redis-
tribute in the tangent plane; the Lagrangian particles become more
computationally affordable as they are responsible for advection
only, and can thus be deployed at larger amounts to track out more
sophisticated and accurate flow patterns.

Secondly, we design multi-MELP, a meshless, multi-region track-
ing mechanism that enables the physically-based interaction among
multiple MELP systems to simulate complex foam dynamics with
evolving topology. The key innovation is the soft-handling of the
non-manifold junctions. For instance, a triple-junction is not mod-
eled with a singular edge, but with three manifold interfaces tracked
by three MELP systems. The coupled dynamics of the junction is
computed by a surface tension sharing mechanism. Multi-MELP is
conveniently extended from MELP, inherits MELP’s capacities in
resolving high-quality interfacial flow, develops bubble clusters and
foams entirely on-the-fly, and recovers Plateau’s laws accurately.
We summarize our main contributions as:

(1) A novel, bi-layer particle representation (MELP) for solving
dynamic PDEs on moving thin films that achieves state-of-
the-art fineness and visual realism.

(2) A novel, mesh-free approach to modeling foam junctions
(multi-MELP) that enables dynamic, on-the-fly foam forma-
tion according to Plateau’s laws.

(3) The versatile simulation of complex phenomena, e.g. large
foam clusters with hundreds of regions, Rayleigh-Taylor flow
across Plateau borders, as well as Newton black films.

2 RELATED WORKS
Film simulation. The simulation of thin film lamellae (e.g. soap

bubbles or membranes with boundaries) has drawn great research
interest across physics and graphics. On one hand, researchers have
derived reduced governing equations [Chomaz 2001; Couder et al.
1989] and PDE solvers [Saye and Sethian 2013] to model the thin
film evolution on spherical-coordinate grids [Hill and Henderson
2016; Huang et al. 2020], level-sets [Zheng et al. 2009], meshes [Da
et al. 2015, 2016; Ishida et al. 2020, 2017; Saye and Sethian 2013, 2016;
Wang and Chern 2021; Zhu et al. 2014], particles [Wang et al. 2020],
or using a hybridization of meshes and points [Chen et al. 2021;
Hyde et al. 2020]. On the other hand, the iridescent color patterns of
thin films can be physically computed using thin film interference

[Glassner 2000; Iwasaki et al. 2004; Jaszkowski and Rzeszut 2003] to
create convincing visual effects. One central challenge for thin film
(lamella) simulation is to jointly simulate the interfacial flow and
the membrane deformation. In particular, our work is motivated by
Ishida et al. [2020, 2017] and Wang et al. [2021], both of which unify
thin film deformation with thickness evolution.

Foam simulation. In the simulation of foams — multiple bubbles
connected via non-manifold junctions, the main challenge transi-
tions to modeling the dynamics of the junctions. Extensive research
efforts have been devoted to the theoretical understanding [Cohen-
Addad et al. 2013] and numerical validation [Saye and Sethian 2013]
of the dynamics and equilibrium states of these junctions. In geo-
metric processing, researchers explore non-manifold differential
operators that can accommodate PDE solving on foam structures
[Sharp and Crane 2020]. Saye and Sethian [2013] construct a compre-
hensive framework that takes into account the thickness evolution
on a microscopic scale. In computer graphics, researchers have also
developed continuum-based approaches to model the macroscopic
behavior of foam materials [Ram et al. 2015; Yue et al. 2015]. In this
paper, we focus on simulating wet foam structures to simultaneously
resolve the flow details and topological evolution.

Eulerian-Lagrangian methods. The MELP method is built upon
multiple lines of previous work in hybrid Eulerian-Lagrangian simu-
lation. Our design is motivated by PIC/FLIP [Zhu and Bridson 2005],
MPM [Stomakhin et al. 2013], and vortex methods [Koumoutsakos
2005] among others. Unlike traditional methods, whose Eulerian
components remain static in the world space, both the Eulerian and
Lagrangian components in MELP move based on physical veloci-
ties to track a dynamic, codimensional fluid domain. In this regard,
MELP is also motivated by arbitrary Lagrangian-Eulerian (ALE)
methods [Hirt et al. 1974; Sahu et al. 2020], along with other moving
Eulerian methods such as translational grids [Cohen et al. 2010;
English et al. 2013] and Eulerian solids [Levin et al. 2011].

Moving surface. We build the mathematical foundation of MELP
upon the theory of moving surface calculus [Afas 2018; Grinfeld
2013; Grinfeld et al. 2012], which decouples a dynamic interface’s
normal and tangential motions with a secondary reference frame.
This line of research encompasses a broad range of physical applica-
tions ranging from basic fluid systems [Grinfeld 2010a,b,c; Grinfeld
et al. 2009; Morgenroth et al. 2020], fluid and electron bubbles [Grin-
feld 2009; Svintradze 2019], burning [You and Yang 2020], to mag-
netostatic systems [Grinfeld and Grinfeld 2017]. The MELP method
employs the normal coordinate system originated from the moving
surface calculus to advance the Eulerian particles.

3 CONTINUUM MODEL

3.1 Geometry
Lamellae. As depicted on the left of Figure 2, a thin film lamella is

a layer of fluid trapped between two air-liquid interfaces. We refer
to one of the interfaces as the base surface 𝑆𝐵 , which is assumed
to be a connected, orientable Riemannian 2-manifold in R3. A base
surface may be open with boundary (e.g. a disk) or closed (e.g. a
bubble). The orientability allows a continuous field n : 𝑆𝐵 → 𝑆2

of outward-pointing, unit normal vectors to be defined. For a disk,
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Fig. 2. An illustration of our one-sided geometric model. Left: a thin film
lamella with thickness and local frames. Right: a triple-junction represented
by three lamellae without directly modeling the singularity at 𝐸.

the outward direction is defined arbitrarily, while for a bubble the
outward direction points away from the enclosed volume. At each
point 𝑝 ∈ 𝑆𝐵 , given the normal vector, a tangent plane is uniquely
determined, for which we construct an orthonormal basis with
{e1 (𝑝), e2 (𝑝)}. We then define a field of local frames R : 𝑆𝐵 → 𝑆𝑂3,
as R(𝑝) = {e1 (𝑝), e2 (𝑝), n(𝑝)} with coordinates (𝑢, 𝑣, 𝑧). Addition-
ally, we define a field of mean curvatures 𝐻 : 𝑆𝐵 → R, a field of
metric tensors 𝑔 : 𝑆𝐵 → R2×2, and a field of thickness 𝜂 : 𝑆𝐵 → R.

Our definition of the geometry of a lamella 𝐿 is then the 5-tuple:
(𝑆𝐵,R, 𝐻, 𝑔, 𝜂). The other interface 𝑆𝑇 can be defined as the image
𝑓 (𝑆𝐵) of the function 𝑓 : 𝑆𝐵 → R3 with 𝑓 (𝑝) = 𝑝 + 𝜂 (𝑝)n(𝑝). The
geometric quantities, e.g. the mean curvature, are specified on 𝑆𝐵 ,
but not on 𝑆𝑇 . In these cases, we assume the quantity at 𝑓 (𝑝) ∈ 𝑆𝑇
equals that at 𝑝 ∈ 𝑆𝐵 . This is reasonable as the film’s thickness scale
(10−7m) is minuscule compared to its length scale (10−2m).

Junctions. As depicted on the right of Figure 2, a junction is
formed at 𝐸 where multiple pieces of lamellae come into contact.
These junctions are typically considered non-manifold when thin
films are viewed as infinitesimally-thin mathematical surfaces. But
from a volumetric standpoint, the junction 𝐸 is indeed a bulk of
liquid confined by its three manifold interfaces. In this light, we
model this triple-bubble with three lamellae: 𝐿𝐴 , 𝐿𝐵 and 𝐿𝐶 , with
(𝑆𝐵)𝐴 , (𝑆𝐵)𝐵 and (𝑆𝐵)𝐶 the three manifold interfaces that together
delineate 𝐸. The entire liquid volume is the union of the volume rep-
resented by 𝐿𝐴 , 𝐿𝐵 and 𝐿𝐶 . It should be noted that near the contact
areas, (𝑆𝑇 )𝐴 , (𝑆𝑇 )𝐵 and (𝑆𝑇 )𝐶 are no longer air-liquid interfaces,
but rather pseudo-interfaces between different regions. We do not
enforce that these pseudo-interfaces coincide exactly, assuming that
imperfections at this level are negligible to the overall dynamics.

3.2 Dynamics
Euler equations. We derive our thin film dynamic model based on

the Euler equations for inviscid, incompressible flow with surface
tension: 

𝜌
𝐷𝒖

𝐷𝑡
= −∇𝑝 + 𝒇𝜎 + 𝒇ext,

∇ · 𝒖 = 0,
(1)

where 𝜌 denotes the density, 𝑝 the pressure, 𝒇𝜎 the surface tension
force per unit volume, and 𝒇ext the external forces, e.g. gravity.

Surface tension. The surface tension force 𝒇𝜎 in Equation 1 is
computed as

𝒇𝜎 = (𝜎𝐻n + ∇𝑠𝜎) · 𝛿𝐼 , (2)
with 𝜎 denoting the surface tension coefficient, 𝐻 and n the mean
curvature and normal vector on the interfaces, ∇𝑠 the surface gradi-
ent operator, and 𝛿𝐼 the Dirac delta function that is non-zero only
on the interfaces. The first term: 𝜎𝐻n reflects the normal stress pre-
scribed by the Young-Laplace Law [Finn 1999], and the second term:
∇𝑠𝜎 reflects the tangential stress corresponding to the Marangoni
effect. The surface tension 𝜎 relates to the surfactant concentration
Γ as 𝜎 = 𝜎0 − 𝑅𝑇 Γ, where 𝜎0 is the surface tension for pure water,
𝑅 the ideal gas constant, and 𝑇 the temperature [Xu et al. 2006].

Lamellae. Following Ishida et al. [2020], we separate Equation 1
into its normal and tangential components as:

𝜌
𝐷𝒖⊥

𝐷𝑡
= − 𝜕𝑝

𝜕𝑧
n + 𝛿𝐼𝜎𝐻n + 𝒇⊥ext,

𝜌
𝐷𝒖⊤

𝐷𝑡
= 𝛿𝐼∇𝑠𝜎 + 𝒇⊤ext .

(3)

Here we use the superscript ⊥ for normal components and ⊤ for
tangential components. The normal equation is obtained via projec-
tion, and the tangential equation is obtained via asymptotic simplifi-
cation under the lubrication assumption [Chomaz 2001; Huang et al.
2020]. We further assume that the fluid pressure gradient along 𝑧 is
negligible, as is done in [Chomaz 2001; Ishida et al. 2020], so that
𝜕𝑝
𝜕𝑧 only reflects the air-liquid pressure jumps. Hence we have

𝜕𝑝

𝜕𝑧
= 𝛿𝐵 · (𝑝 − 𝑝in) + 𝛿𝑇 · (𝑝out − 𝑝), (4)

with 𝛿𝐵 and 𝛿𝑇 being Dirac delta functions that represent 𝑆𝐵 and
𝑆𝑇 respectively, and satisfying 𝛿𝐵 + 𝛿𝑇 = 𝛿𝐼 ; 𝑝in and 𝑝out being
inside and outside air pressures with the orientation decided by
the normal vector; and 𝑝 the characteristic fluid pressure, which
is assumed constant here since the air-liquid pressure difference is
much greater. Adding in the conservation equations of the surfactant
concentration Γ and membrane thickness 𝜂, we rewrite Equation 3
to obtain the full dynamic model:

𝐷𝒖⊥

𝐷𝑡
= − 1

𝜌

𝜕𝑝

𝜕𝑧
n + 𝛿𝐼 (𝜎0 − 𝑅𝑇 Γ)𝐻

𝜌
n + 1

𝜌
𝒇⊥ext,

𝐷𝒖⊤

𝐷𝑡
= −2𝑅𝑇

𝜌𝜂
∇𝑠Γ +

1
𝜌
𝒇⊤ext,

𝐷Γ

𝐷𝑡
= −Γ∇𝑠 · 𝒖,

𝐷𝜂

𝐷𝑡
= −𝜂∇𝑠 · 𝒖 .

(5)

Junctions. As described in Subsection 3.1, a junction is partitioned
by a set of lamellae into several regions, akin to the symmetry
units in [Koehler et al. 2004]. We assume the pseudo-interfaces
among these regions impose slip boundary conditions, where the
tangential flows are unconstrained while the normal velocities are
matched. Material can transport between regions. In particular,
near a junction a ∇𝑠 operator shall be replaced by ∇ in Equation 5.
Due to our method’s codimensional nature, we opt not to evaluate
volumetric derivatives explicitly, but rather simulate its behaviors
using particles.
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4 MELP
Wepropose theMoving Eulerian-Lagrangian Particle (MELP)method
for dynamic interface tracking and surface flow simulation. As
shown in Figure 3, the MELP framework consists of a set of sparse
Eulerian particles E and a set of fine Lagrangian particles L. The
Lagrangian particles carry physical quantities such as mass and
volume, and perform material and momentum transport by shifting
their positions. The Eulerian particles track the deformed thin film
while maintaining uniform discretization, thereby offering a stable
computational stencil on the moving surface. The two particle sets
will collaborate both in representing the thin film geometry and in
solving the dynamic equations.

Geometry. We have defined a lamella as a 5-tuple (𝑆𝐵,R, 𝐻, 𝑔, 𝜂).
As shown on the left of Figure 3, 𝑆𝐵 is uniformly discretized by the
E particles, each of which controls some area 𝑎. Given the point set,
we approximate the local frame R, mean curvature 𝐻 , and metric
tensor 𝑔 following [Wang et al. 2020]. The remaining variable 𝜂 will
be determined by the distribution ofL particles. As displayed on the
left of Figure 3, due to the incompressibility constraint, the denser
the L particles are, the larger 𝜂 becomes — an idea leveraged by
previous works [Solenthaler 2011; Wang et al. 2021]. Each E particle
then controls a fluid column with volume 𝑉 = 𝑎 · 𝜂.

Dynamics. In solving the dynamic equations, the E and L par-
ticles collaborate in a similar fashion as the grids and particles in
hybrid Eulerian-Lagrangian methods. The advection term is handled
in the Lagrangian manner by shifting the positions of L particles.
The projection term is solved on the sparser, uniformly-distributed
E particles using Implicit Incompressible SPH (IISPH) [Ihmsen et al.
2013]. The material and momentum transfer between E and L is
achieved using Affine Particle-In-Cell (APIC) [Jiang et al. 2015].

Interface Tracking. It is shown that the advection of an interface
is unaffected by the tangential velocity [Gibou et al. 2018]. As seen
on the right of Figure 3, since the E particles are purely geometric,
we can let them advect with the normal component of the material
velocity without affecting the dynamics. Figure 4 depicts the tempo-
ral evolution of E advecting with the normal velocity (red dots) and
L advecting with the full velocity (blue circles) in a steady spiral
flow with velocity 𝒖 = (−𝑥𝑦, 𝑥2). It can be observed that both E and
L remain on the same interface, with E enjoying a considerably
more uniform distribution. We further incorporate the arbitrary
Lagrangian-Eulerian idea, in which an artificial tangential veloc-
ity is granted on E to avoid deformation-induced clustering [Sahu
et al. 2020]. We compute this artificial velocity following the particle
shifting approach in the SPH literature [Lind et al. 2012].

4.1 Algorithm
The basic MELP procedure is illustrated in Figure 5 with labels
corresponding to the following stages:

(1)L2E Transfer: Transfer mass𝑚, surfactant 𝑐 , volume𝑉 , and
momentum 𝒑 from L to E (Algorithm 1).

(2) Geometry Computation: Compute thickness 𝜂 for E and
L particles; update control area 𝑎, mean curvature 𝐻 and metric
tensor 𝑔 for E particles (Algorithm 2).

Fig. 3. Left: the local density of L determines the thickness. Right: L advect
with the full velocity, E advect with the normal velocity.

Fig. 4. The temporal evolution of the E particles (red dots) and L particles
(blue circles) in a steady spiral flow.

Table 1. A list of symbols and expressions for the MELP algorithm.

Symbol Meaning

𝑊 3D kernel function
𝑊 2D kernel function
𝒙𝐴 position of particle 𝐴

𝑊 (𝐴, 𝐵) 𝑊 (𝒙𝐴 − 𝒙𝐵)
⊥𝐴 (𝒘) project𝒘 to the normal direction of 𝐴
⊤𝐴 (𝒘) project𝒘 to the tangent plane of 𝐴
𝑊 (𝐴, 𝐵) 𝑊 (⊤𝐴 (𝒙𝐴 − 𝒙𝐵))

𝑟 kernel support radius
N E (𝐴) all E particles within radius 𝑟 from 𝒙𝐴
NL (𝐴) all L particles within radius 𝑟 from 𝒙𝐴
Proj(A) project 𝒙𝐴 onto 𝑆𝐵

(3) Dynamics Computation: Solve Equation 5 on E in the nor-
mal and tangential directions; update velocity 𝒖 (Algorithm 3).

(4) E2L Transfer: Each L particle interpolates 𝒖 from nearby
E particles (Algorithm 4).

(5) E Advance: Each E particle advects with the normal veloc-
ity, deforming the surface 𝑆𝐵 . On the updated 𝑆𝐵 , shift E particles
tangentially to maintain uniform distribution (Algorithm 6).

(6) L Advance: Each L particle advects with the full velocity.
Afterwards, project their positions onto 𝑆𝐵 (Algorithm 7).

The following subsections will go through each of the six stages
in detail. We define relevant symbols and expressions in Table 1.

4.2 L2E Transfer
For a generic quantity 𝑞, we conduct conservative transfer from L
to E as:

𝑞𝐸 =
∑︁

𝐿∈NL (𝐸)
𝑊̂ (𝐸, 𝐿) · 𝑞𝐿, (6)
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1 2 2 3 4
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Fig. 5. The computation workflow of a single simulation step in our proposed MELP framework.

where 𝑊̂ has the partition of unity quality
∑
𝐸∈NE (𝐿) 𝑊̂ (𝐸, 𝐿) = 1.

Given an SPH kernel𝑊 , we define 𝑊̂ (𝐸, 𝐿) =𝑊 (𝐸, 𝐿)/𝛼𝐿, where
𝛼𝐿 =

∑
𝐸∈NE (𝐿)𝑊 (𝐸, 𝐿). Then, we transfer mass𝑚, surfactant 𝑐 ,

volume 𝑉 , and momentum 𝒑 according to Equation 6. Furthermore,
we construct an affine momentum 𝒑̂ for APIC:

𝒑̂𝐸 =
∑︁

𝐿∈NL (𝐸)
𝑊̂ (𝐸, 𝐿) · [B𝐿 (D𝐿)−1⊤𝐿 (𝒙𝐸 − 𝒙𝐿)], (7)

where B and D are the affine state and inertia-like tensor carried by
the L particles. We reconstruct velocity 𝒖𝐸 with 𝒖𝐸 =

𝒑𝐸+𝒑̂𝐸
𝑚𝐸

, and
split it into its normal and tangential components as 𝒖⊥

𝐸
=⊥𝐸 (𝒖𝐸 ),

𝒖⊤
𝐸
= ⊤𝐸 (𝒖𝐸 ), which are to be evolved separately in Section 4.4.

4.3 Geometry Computation
For each 𝐿 ∈ L, we evolve thickness 𝜂𝐿 according to Equation 5
after temporal discretization:

𝜂𝐿 (𝑡 ) = 𝜂𝐿 (𝑡−1) − Δ𝑡𝜂𝐿 (𝑡−1)∇𝑠 · 𝒖 . (8)
For each 𝐸 ∈ E, we compute number density 𝛿𝐸 and area 𝑎𝐸 as:

𝛿𝐸 =
∑︁

𝐸′∈NE (𝐸)
𝑊 (𝐸, 𝐸 ′), 𝑎𝐸 =

1
𝛿𝐸

. (9)

Then, since the particle volume𝑉𝐸 is already transferred to E during
the L2E step, the thickness 𝜂𝐸 can be computed by 𝜂𝐸 = 𝑉𝐸/𝑎𝐸 .
For each 𝐸 ∈ E, a neighboring particle 𝐸 ′ ∈ N E (𝐸) has coor-

dinates in 𝐸’s local frame: (𝑢, 𝑣, 𝑧) = ((𝒙𝐸′ − 𝒙𝐸 ) · e1, (𝒙𝐸′ − 𝒙𝐸 ) ·
e2, (𝒙𝐸′ −𝒙𝐸 ) ·n). With ∇𝐸 being the 2D differential operator on the
tangent plane of 𝐸, we compute the mean curvature 𝐻𝐸 and metric
tensor 𝑔𝐸 using neighboring E particles as:

𝐻𝐸 = −1
2∇𝐸 · (

∇𝑧
√

1 + ∇𝑧2
) ≈ −1

2∇𝐸
2𝑧,

𝑔𝐸 =


1 +

(
𝜕𝑧
𝜕𝑢

)2
, 𝜕𝑧𝜕𝑢

𝜕𝑧
𝜕𝑣

𝜕𝑧
𝜕𝑢

𝜕𝑧
𝜕𝑣 , 1 +

(
𝜕𝑧
𝜕𝑣

)2

 .
(10)

Algorithm 1 L2E transfer
1: for each particle 𝐿 ∈ L do
2: Compute 𝛼𝐿 =

∑
𝐸∈NE (𝐿)𝑊 (𝐸, 𝐿).

3: end for
4: for each particle 𝐸 ∈ E do
5: for 𝑞 ∈ {𝑚,𝑐,𝑉 ,𝒑} do
6: Compute 𝑞𝐸 according to Equation 6
7: end for
8: Compute 𝒑̂𝐸 according to Equation 7
9: 𝒖𝐸 ←

𝒑𝐸+𝒑̂𝐸
𝑚𝐸

, 𝒖⊥
𝐸
←⊥𝐸 (𝒖𝐸 ), 𝒖⊤𝐸 ← ⊤𝐸 (𝒖𝐸 )

10: end for

Algorithm 2 Geometry computation
1: for each particle 𝐿 ∈ L do
2: Evolve 𝜂𝐿 according to Equation 8
3: end for
4: for each particle 𝐸 ∈ E do
5: Compute 𝑎𝐸 according to Equation 9
6: Compute 𝜂𝐸 =

𝑉𝐸
𝑎𝐸

7: Compute 𝐻𝐸 and 𝑔𝐸 according to Equation 10
8: end for

Algorithm 3 Dynamics computation with E

1: Compute enclosed volume 𝑉 with Equation 11
2: Compute enclosed pressure 𝑝in with the ideal gas law
3: Solve Γ implicitly with Equation 14
4: for each particle 𝐸 ∈ E do

5: Compute 𝐷𝒖⊥
𝐸

𝐷𝑡
with Equation 12

6: Compute 𝐷𝒖⊤
𝐸

𝐷𝑡
with Equation 15

7: Update 𝒖⊥ and 𝒖⊤ using symplectic Euler with Δ𝑡
8: end for
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Fig. 6. Different frames of a deforming half bubble with black spots.

4.4 Dynamics Computation
4.4.1 Normal Dynamics. Similar to Ishida et al. [2020], we assume
that the normal velocity 𝒖⊥ is constant in an E particle 𝐸’s control
column, i.e. 𝒖⊥

𝐸
= 1
𝑉𝐸

∫
𝐸
𝒖⊥𝑑𝑉 . Therefore 𝐷𝒖⊥

𝐸

𝐷𝑡
≈ 1
𝑉𝐸

∫
𝐸
𝐷𝒖⊥
𝐷𝑡

𝑑𝑉 . We
then need to integrate the right-hand side of the normal component
in Equation 5. For the term 𝜕𝑝

𝜕𝑧 , whose expression is given by Equa-
tion 4, integrating over the control column of 𝐸 yields 𝑎𝐸 · (𝑝out−𝑝in).
We assign 𝑝out to be the atmospheric pressure 𝑝atm. If the lamella
is open (disk), then we assign 𝑝in = 𝑝atm. If the lamella is closed
(bubble), we compute the enclosed pressure using the ideal gas law
as: 𝑝in = 𝑛0𝑅𝑇 /𝑉 with 𝑛0 being the enclosed molar mass and 𝑉 the
enclosed volume, which we compute as:

𝑉 =
∑︁
𝐸∈E

𝜁 · 1
3𝑎𝐸 (𝑂 − 𝐸), 𝜁 =

{ 1, (𝑂 − 𝐸) · n𝐸 ≥ 0,
−1, otherwise, (11)

where 𝑂 is an arbitrarily selected point in R3 [Zhang et al. 2001].
Similarly, we integrate 𝛿𝐼 (𝜎0 − 𝑅𝑇 Γ)𝐻 and 𝒇⊥ext over the control
column as 2𝑎𝐸 (𝜎0 − 𝑅𝑇 Γ)𝐻𝐸 and 𝑉𝐸𝒇

⊥
ext respectively. Hence we

obtain the expression for 𝐷𝒖⊥
𝐸

𝐷𝑡
as:

𝐷𝒖⊥
𝐸

𝐷𝑡
=
𝑝in − 𝑝out

𝜌𝜂𝐸
n𝐸 +

2(𝜎0 − 𝑅𝑇 Γ)𝐻𝐸
𝜌𝜂𝐸

n𝐸 +
𝒇⊥ext
𝜌

. (12)

4.4.2 Tangential Dynamics. Following the temporal discretization
scheme proposed by Huang et al. [2020], the thin film evolution
along the tangential directions can be approximated as

𝒖⊤ − 𝒖⊤∗

Δ𝑡
= −2𝑅𝑇

𝜌𝜂∗
∇𝑠Γ +

1
𝜌
𝒇⊤ext,

Γ − Γ∗
Δ𝑡

= −Γ∗∇ · 𝒖⊤,

𝜂 − 𝜂∗
Δ𝑡

= −𝜂∗∇ · 𝒖⊤,

(13)

where 𝒖⊤∗, Γ∗ and 𝜂∗ are the respective quantities after advection,
which we collect in the L2E step.

Reorganizing Equation 13 yields an implicit equation of Γ:

( − 1
Δ𝑡Γ∗

)Γ + (Δ𝑡 𝑅𝑇
𝜌
∇ 1
𝜂∗
) · ∇𝑠Γ + (Δ𝑡

𝑅𝑇

𝜌

1
𝜂∗
)∇2
𝑠 Γ

= ∇ · 𝒖⊤∗ − 1
Δ𝑡
+ Δ𝑡 (∇ 1

𝜌
· 𝒇⊤ext +

1
𝜌
∇ · 𝒇⊤ext) .

(14)

We solve this equation using the Implicit Incompressible SPH
method with a relaxed Jacobi scheme with relaxation parameter
𝜔 = 0.2. Once Γ is solved, we evaluate for each 𝐸 ∈ E the tangential
acceleration in Equation 5 as:

𝐷𝒖⊤
𝐸

𝐷𝑡
= −2𝑅𝑇

𝜌𝜂𝐸
∇𝑠Γ +

1
𝜌
𝒇⊤ext . (15)

Then, 𝒖⊥
𝐸
and 𝒖⊤

𝐸
are updated using a symplectic Euler step with Δ𝑡 .

Algorithm 4 E2L transfer
1: for each particle 𝐿 ∈ L do
2: Compute 𝒖𝐿 according to Equation 16
3: Compute B𝐿 according to Equation 17
4: Compute D𝐿 according to Equation 18
5: end for

4.5 E2L Transfer
For each 𝐿 ∈ L, it collects three quantities from nearby E particles:
the velocity 𝒖𝐿 , affine state B𝐿 , and inertia-like tensor D𝐿 as:

𝒖𝐿 =
∑︁

𝐸∈NE (𝐿)
𝑊̂ (𝐸, 𝐿) · 𝒖𝐸 , (16)

B𝐿 =
∑︁

𝐸∈NE (𝐿)
𝑊̂ (𝐸, 𝐿) · ⊤𝐿 (𝒖𝐸 ) ⊗ ⊤𝐿 (𝒙𝐸 − 𝒙𝐿), (17)

D𝐿 =
∑︁

𝐸∈NE (𝐿)
𝑊̂ (𝐸, 𝐿) · ⊤𝐿 (𝒙𝐸 − 𝒙𝐿) ⊗ ⊤𝐿 (𝒙𝐸 − 𝒙𝐿) . (18)

4.6 E Advance
Similar to the mesh velocity in Sahu et al. [2020], we define an
E velocity: 𝒖E , carried by individual E particles, to govern their
movements. In the normal direction, 𝒖E needs to coincide with the
material velocity 𝒖⊥

𝐸
, while tangentially, 𝒖E can use arbitrary veloc-

ities to maintain uniform distribution. We ensure this by setting:

𝒖E
𝐸
(𝑡) = 𝒖⊥𝐸 (𝑡) + ⊤𝐸 (𝒖

E
𝐸
(𝑡 − 1)), (19)

which takes the tangential component of the previous 𝒖E
𝐸
and add

to it the current normal velocity. Using 𝒖E
𝐸
we advance the positions

of the E particles using a symplectic Euler step with Δ𝑡 , updating
the tracked interface. We also update the local frames R𝐸 and metric
tensors 𝑔𝐸 . Then, we redistribute the E particles to maintain uni-
form distribution. In particular, similar to particle shifting based on
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Fick’s law of diffusion, we compute a shifting velocity 𝒖E
𝐸
to prompt

particles to flow from high concentration regions to low concentra-
tion ones. Using number density 𝛿 to gauge the concentration, the
problem translates to solving for a constant particle density on the
surface with pseudo-pressure 𝐶:

−Δ𝑡2 (−𝛿∗∇2
𝑠𝐶) = 𝛿 − (𝛿∗ + Δ𝑡 (−𝛿∗∇ · 𝒖E )), (20)

where 𝛿∗ and 𝛿 stand for the current and average number density
of E particles; and Δ𝑡 stands for the temporal step size for redis-
tribution. Equation 20 is solved using IISPH as with Equation 14.
The full redistribution procedure is documented in Algorithm 5,
where 𝛽 is the redistribution strength, and 𝜑 the threshold deciding
whether the distribution is satisfactory. We set 𝛽 to be the reciprocal
of the largest value of ∇𝑠𝛿 , and set 𝜑 to be 3. The while loop in
Algorithm 5 has a maximum number of iterations of 10. In practice,
most advance steps require only one step of redistribution.

4.7 L Advance
As described in Algorithm 7,L particles advect with 𝒖𝐿 using a sym-
plectic Euler step with Δ𝑡 . They will be projected onto 𝑆𝐵 defined
by E with a Moving Least-Squares (MLS)-based approach.

Algorithm 5 E redistribution

1: Initialize 𝒖E to 0
2: while |𝛿max−𝛿min |

|E | ≥ 𝜑 do
3: Solve 𝐶 implicitly using Equation 20
4: for each particle 𝐸 ∈ E do

5:
𝐷𝒖E𝐸
𝐷𝑡
← −𝛽∇𝑠𝐶

6: 𝒖E
𝐸
← 𝒖E

𝐸
+ Δ𝑡 𝐷𝒖E𝐸

𝐷𝑡

7: 𝒙𝐸 ← 𝒙𝐸 + Δ𝑡𝒖E𝐸
8: end for
9: Update local frames and metric tensors
10: Update 𝛿 according to Equation 9
11: end while
12: for each particle 𝐸 ∈ E do
13: 𝒖E

𝐸
← 𝒖E

𝐸
+ 𝒖E

𝐸
14: end for

Algorithm 6 E Advance
1: for each particle 𝐸 ∈ E do
2: Update 𝒖E

𝐸
with Equation 19

3: Update 𝒙𝐸 using symplectic Euler with Δ𝑡
4: end for
5: Update local frames and metric tensors
6: Redistribute E with Algorithm 5

Algorithm 7 L Advance
1: for each particle 𝐿 ∈ L do
2: Update 𝒙𝐿 with 𝒖𝐿 using symplectic Euler with Δ𝑡
3: 𝒙𝐿 ← Proj(𝐿)
4: end for

4.8 MELP Implementation Details
SPH. Following Wang et al. [2021], we adopt SPH-based, surface

differential operators as:



(∇𝑠𝑞)𝐸 =
∑︁

𝐸′∈NE (𝐸)
𝑎𝐸′ (𝑞𝐸′ − 𝑞𝐸 ) ∇𝑠𝑊 (𝐸, 𝐸 ′),

(∇𝑠 ·𝒘)𝐸 =
∑︁

𝐸′∈NE (𝐸)
𝑎𝐸′⊤𝐸 (𝒘𝐸′ −𝒘𝐸 ) · ∇𝑠𝑊 (𝐸, 𝐸 ′),

(∇2
𝑠𝑞)𝐸 =

∑︁
𝐸′∈NE (𝐸)

𝑎𝐸′ (𝑞𝐸′ − 𝑞𝐸 )
2|∇𝑠𝑊 (𝐸, 𝐸 ′) |
|𝒙𝐸 − 𝒙𝐸′ |

.

(21)

where ∇𝑠𝑊 is the surface gradient of the 2D kernel function𝑊 ,
which can be approximated as ∇𝑠𝑊 = 𝑔∇𝑊 [Wang et al. 2020]. In
practice, we approximate 𝑔 with I2×2 with no apparent degradation
in performance. For both𝑊 and𝑊 , we use the Quintic spline kernel
with radius 𝑟 = 4 · Δ𝑥 , where Δ𝑥 reflects the E particle separation.
We handle particle insufficiency near solid boundaries with several
layers of boundary particles with the same fineness as E. We also
make use of the XSPH artificial viscosity [Schechter and Bridson
2012] with viscosity parameter 0.99 to stabilize 𝒖E .

Local Frame and Projection. At time 𝑡 , a particle 𝐸 ∈ E computes
R𝐸 as follows: 1) perform PCA on N E (𝐸) and set the normalized
eigenvector with the smallest eigenvalue as n′, 2) set n′ = −n′ if
0 > n′·n(𝑡−1), 3) construct an intermediate frameR′ = (e1 ′, e2 ′, n′)
where e1 ′ is an arbitrary vector perpendicular to n′ and e2 ′ =

n′× e1 ′, 4) in the tangent plane, use 2D SPH to compute ∇𝐸𝑧 = ( 𝜕𝑧𝜕𝑢 ,
𝜕𝑧
𝜕𝑣 )

𝑇 and let e1 = R′(1, 0, 𝜕𝑧𝜕𝑢 )
𝑇 , e2 = R′(0, 1, 𝜕𝑧𝜕𝑣 )

𝑇 , n = e1 × e2.
Finally, R𝐸 = (e1, e2, n). A particle 𝐿 ∈ L computes R𝐿 as follows:
1) compute the average of {n𝐸 |𝐸 ∈ N E (𝐿)} weighted by𝑊 (𝐿, 𝐸),
set the normalized result to n 2) construct a frame R𝐿 = (e1, e2, n)
where e1 is an arbitrary vector perpendicular to n and e2 = n × e1.
For particle 𝐴 ∈ L ∪ E, we compute ⊥𝐴 (𝒘) = (𝒘 · n𝐴)n𝐴 and
⊤𝐴 (𝒘) = 𝒘− ⊥𝐴 (𝒘). We compute Proj(𝐴) as follows: given local
frame R𝐴 , on the tangent plane run MLS with data samples {𝒙𝐵 =

(𝑢𝐵, 𝑣𝐵, 𝑧𝐵) |𝐵 ∈ N E (𝐴)}, fitting 𝑧 as a function of (𝑢, 𝑣). Then let 𝑧
denote the function evaluated at (0, 0)𝑇 , and set 𝒙𝐴 ← 𝒙𝐴 − 𝑧n𝐴 .

Newton Black Films and Rim Surface Tension. Both effects enter
the dynamic system through 𝒇ext. The Newton Black Films (black
spots) are extremely thin regions on a soap film, where destructive
light interference makes them appear black. We prefix a number of
seeders in space that mark nearby L particles as B particles, whose
color will be set to black. The B particles receive an additional
surface tension force from the B-L interface as if B is a second
fluid phase. This force is computed using a VOF approach, where
E particles estimate the fraction of nearby B particles, and then
compute surface tension following Akinci et al. [2013]. The rim
surface tension along the rim’s normal direction nrim is given by
𝑓𝜎,rim = 2𝜎 + (2𝜎 (𝜋 −1)𝑅rim)/𝑟𝑐 [Bush and Hasha 2004] where 𝑅rim
reflects the thickness of the rim and 𝑟𝑐 reflects the size of the thin
film. We assume 𝑟𝑐 ≫ 𝑅rim, hence 𝑓𝜎 is dominated by the first term,
so 𝑓𝜎,rim ≈ 2𝜎 . We estimate the rim’s normal direction following
Akinci et al. [2013] as (nrim)𝐸 = 𝑟

∑
𝐸′∈NE (𝐸) 𝑎𝐸′∇𝑠𝑊 (𝐸, 𝐸 ′).
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5 MULTI-MELP
We define a foam 𝐹 = {𝐿𝑖 }𝑛𝑖=0 as a set of 𝑛 lamella regions. As shown
in Figure 7, multi-MELP simulates 𝐹 with 𝑛 MELP objects each
corresponding to one region and running them as subroutines. A
multi-MELP simulation step breaks down into the following stages:

(1)Multi-Region Tracking: In each region, each E particle iden-
tifies other regions it may be coupled with via neighbor searching.

(2) Contact Handling: In each region, each E particle computes
non-penetration forces if it is inside another region; and damping
forces if it is moving in opposite directions from another region.

(3)MELP Advance: Simulate each region independently using
MELP, pause after the dynamics computation is complete.

(4) Surface Tension Sharing: In each region, each E particle
checks each region it couples with; modifies the velocity according
to the other region. Resume the paused MELP simulations in (3).

(5) Material Transfer: In each region, each L particle proba-
bilistically decides another region to which it is transported, based
on the surfactant concentration Γ and velocity 𝒖.

Fig. 7. The schematics of a multi-MELP simulation step; 𝐿1 through 𝐿5 are
5 MELP objects corresponding to the 5 regions.

5.1 Motivating Example
Figure 8 illustrates a motivating example, where two bubbles collide
to form a double-bubble — the simplest form of foam. When two
separate lamellae coalesce into a shared surface, topological adap-
tation occurs as singular points are formed at the top and bottom,
trisecting the thin film into three manifold pieces. With our one-
sided geometric representation, we turn the topological change into
a dynamic one. Topologically, it remains unchanged that there are

Fig. 8. The formation of a double-bubble. The top row shows the particle
perspective; the bottom row depicts the control volumes with force analysis.

two manifold inner surfaces. Dynamically, the inner surfaces of the
partition are now constrained by the matching-velocity boundary
condition described in Section 3.2. In Figure 8, consider 𝑏𝐴 ∈ 𝐿𝐴
(blue) and 𝑟𝐵 ∈ 𝐿𝐵 (red) previously unattached. After coalescence,
they become 𝑔𝐴 and 𝑔𝐵 (green) which are no longer allowed to
move relative to each other. We model their dynamic equivalence
via symmetrization. We depict the particles’ control volumes at the
bottom of Figure 8. For both 𝑔𝐴 and 𝑔𝐵 , we compute their net force
as if they each represent the volume 𝑔𝐴 + 𝑔𝐵 . This guarantees that
𝑔𝐴 and 𝑔𝐵 will move in accordance if they have the same initial
velocity. Note that the region 𝑔𝐴 + 𝑔𝐵 does not need to be deter-
mined explicitly. As shown in the free-body diagram, computing the
net force of 𝑔𝐴 + 𝑔𝐵 boils down to computing 𝑓st, and 𝑓air on both
𝐿𝐴 and 𝐿𝐵 , where 𝑓air and 𝑓st are air pressure and surface tension
induced forces corresponding to the first and the second terms of
Equation 12. These forces can also be continuously evaluated using
SPH interpolation, so no explicit particle pairing is needed. This
procedure is what we refer to as surface tension sharing.

5.2 Multi-Region Tracking
For an E particle 𝑃 ∈ 𝐿𝐾 ∈ 𝐹 , we compile a list of regions with
which it is coupled. For each 𝐿𝑆 ≠ 𝐿𝐾 , we let N = N𝐿𝑆 (𝑃), which
is the set of E particles in 𝐿𝑆 found within the neighborhood of 𝑃 .
If |N | = 0 then 𝐿𝐾 is clearly not coupled with 𝐿𝑆 . Otherwise, we
compute the sum of area 𝑎 =

∑
𝐸∈N 𝑎𝐸 . This expression gauges the

amount of area of 𝐿𝑆 that the neighborhood of 𝑃 encircles. we then
compute the same sum of area 𝑎 =

∑
𝐸∈N𝐿𝐾 (𝑃 ) 𝑎𝐸 in 𝐿𝐾 . If 𝑎 ≪ 𝑎,

then 𝑃 is relatively far away from 𝐿𝑆 ; if 𝑎 ≈ 𝑎, then 𝑎 is in between
𝐿𝐾 and 𝐿𝑆 . We then compute a coupling score 𝛾𝑃,𝑆 = min(1, 𝑎̃

𝑎
), and

store the tuple (𝑆,𝛾𝑃,𝑆 ) for 𝑃 .

5.3 Collision Handling
Handling the collision of multiple bubbles entails the treatment of
1) non-penetration, and 2) damping. Consider an E particle 𝑃 ∈ 𝐿𝐾 .
For each tuple (𝑆,𝛾𝑃,𝑆 ) it has stored, we penalize if 𝑃 is inside 𝐿𝑆 ,
which can be detected if Proj𝐿𝑆 (𝑃) −𝑃 is outward-pointing to 𝐿𝑆 . In
that case, a non-penetration force is computed as 𝜃1 · (Proj𝐿𝑆 (𝑃)−𝑃)
where 𝜃1 is the penalty strength. For damping, we first compute an
average E velocity of all nearby regions weighted by 𝛾 , as

𝒖Eavg =

𝒖E
𝑃
+∑(𝑆,𝛾𝑃,𝑆 ) 𝛾𝑃,𝑆𝒖EProj𝐿𝑆 (𝑃 )

1 +∑(𝑆,𝛾𝑃,𝑆 ) 𝛾𝑃,𝑆 . (22)
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Fig. 9. 13 bubbles merging together, with a heat source at the bottom creating "cyclones" on the surfaces of the bubbles.

Here, 𝒖EProj𝐿𝑆 (𝑃 )
is the SPH interpolation of the E velocity on region

𝐿𝑆 at position Proj𝐿𝑆 (𝑃). Then we damp 𝒖E
𝑃
with 𝒖E

𝑃
= (1−𝜃2)𝒖E𝑃 +

𝜃2𝒖Eavg where 𝜃2 ∈ (0, 1) is the damping strength.

5.4 Surface Tension Sharing
Given an E particle 𝑃 ∈ 𝐿𝐾 , if 𝑃 is not coupled with any other region,
then 𝑓net = 2𝑓st,𝐿𝐾 + 𝑓air,𝐿𝐾 as in the lamella setting. Otherwise, we
consider each tuple (𝑆,𝛾𝑃,𝑆 ) of 𝑃 and compute the shared forces as:

𝑓st,𝐿𝑆 =

𝜎Proj𝐿𝑆 (𝑃 )
· 𝐻Proj𝐿𝑆 (𝑃 )

𝜌 (𝜂Proj𝐿𝑆 (𝑃 ) + 𝜂𝑃 )
· nProj𝐿𝑆 (𝑃 ) , (23)

𝑓air,𝐿𝑆 =
𝑝in,𝐿𝑆

𝜌 (𝜂Proj𝐿𝑆 (𝑃 ) + 𝜂𝑃 )
· nProj𝐿𝑆 (𝑃 ) . (24)

We compute the projection Proj𝐿𝑆 (𝑃) and interpolate 𝜎 , 𝜂, 𝐻 , n on
𝐿𝑆 at Proj𝐿𝑆 (𝑃). The term 𝑝in,𝐿𝑆 is the enclosed air pressure for 𝐿𝑆
computed via the ideal gas law.
There is one caveat — in the lamella case, we account for the

external interface (the one with the atmosphere) by doubling the
surface tension force 𝑓st. However, when a particle represents a
multi-junction, we have only considered interfaces delineated by
another lamella particle set. This is illustrated on the left of Figure 10.
The control volume of 𝑃 is shadowed in pink. We can compute 𝑓st,𝐿𝐾 ,
𝑓air,𝐿𝐾 , 𝑓st,𝐿𝑆 and 𝑓air,𝐿𝑆 as described. However, the surface tension
force from the external interface, which is 𝑓st, atm in orange, is not
computed. To compute 𝑓st, atm, we first compute the pseudo-normal

Fig. 10. Left: illustration of the force 𝑓st, atm that must be accounted for.
Right: material transport is done by transporting L particles directly.

vector natm with

natm =

n𝑃 +
∑
(𝑆,𝛾𝑃,𝑆 ) 𝛾𝑃,𝑆nProj𝐿𝑆 (𝑃 )

1 +∑(𝑆,𝛾𝑃,𝑆 ) 𝛾𝑃,𝑆 , (25)

which is a weighted average of the normal vectors of nearby regions.
If |natm | ≪ 1, then the particle 𝑃 is deemed an internal point, and
𝑓st, atm = 0. Otherwise, on the local frame with normal vector natm

|natm | ,
we compute 𝐻atm according to Equation 10. Then, we compute
𝑓st, atm =

𝜎𝑃 ·𝐻atm
𝜌 (𝜂Proj𝐿𝑆 (𝑃 )+𝜂𝑃 )

· natm. Finally, we have:

𝑓net = 𝑓st,𝐿𝐾 + 𝑓air,𝐿𝐾 +
∑︁
(𝑆,𝛾𝑃,𝑆 )

(𝑓st,𝐿𝑆 + 𝑓air,𝐿𝑆 ) + 𝑓st, atm . (26)

5.5 Material Transfer
As observed in Section 3.2, near a multi-junction, the surfacial ∇𝑠
no longer applies and should be replaced by the volumetric ∇ in
Equation 5. To simulate its behavior we 1) allow material to be ad-
vected to and from regions, and 2) prompt material to flow from
regions with high Γ to the ones with low Γ. As depicted on the
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right of Figure 10, we devise a probabilistic scheme to directly mi-
grate L particles from one region to another region, conserving the
transported quantities. For each L particle 𝑄 ∈ 𝐿𝐾 , let 𝑃 denote
its nearest E neighbor. For each tuple (𝑆,𝛾𝑃,𝑆 ) that 𝑃 stores, we
compute two probability scores 𝐶1,𝐿𝑆 and 𝐶2,𝐿𝑆 for 𝑄 as follows:

𝐶1,𝐿𝑆 = 𝜓1 · (1 −min(1,
| (𝒙𝑄 + Δ𝑡𝒖𝑄 ) − 𝒙Proj𝐿𝑆 (𝑄) |
|𝒙𝑄 − 𝒙Proj𝐿𝑆 (𝑄) |

)), (27)

𝐶2,𝐿𝑆 = 𝜓2 · (1 −min(1,
ΓProj𝐿𝑆 (𝑃 )

Γ𝑃
)), (28)

where𝜓1 and𝜓2 are the transport strength parameters. In computing
𝐶1,𝐿𝑆 , 𝒙𝑄 +Δ𝑡𝒖𝑄 is the position of𝑄 at the next timestep, 𝒙Proj𝐿𝑆 (𝑄)
is the nearest point to 𝑄 on 𝐿𝑆 . If 𝒖𝑄 is driving 𝑄 towards 𝐿𝑆 , then
this score would be high and vice versa. In computing 𝐶2,𝐿𝑆 , we
compute the ratio of Γ between 𝐿𝑆 and 𝐿𝐾 , If 𝐿𝑆 has a significantly
lower surfactant concentration than 𝐿𝐾 , a high probability score
would ensue. We let 𝐿𝐺 denote the region with the largest sum of
the two probabilities, let 𝐶𝐺 denote that sum, and move L particle
𝑄 from 𝐿𝐾 to 𝐿𝐺 at probability min(1,𝐶𝐺 ).

6 EXPERIMENTS AND RESULTS

6.1 Numerical Validation
Plateau Border. Plateau’s laws prescribe that soap films always

meet in groups of threes, along edges that create three dihedral
angles of arccos(− 1

2 ) = 120◦ each. These edges are commonly re-
ferred to as the Plateau borders. These Plateau borders then meet
in groups of fours, creating angles of arccos(− 1

3 ) ≈ 109.47◦ each.
With the surface tension sharing mechanism, our method accurately
recovers both rules. As shown in Figure 11, we verify our approach
on a double-bubble, a triple-bubble, and a quadruple-bubble. In
each setup, the bubbles are initially separated, and the borders are
developed dynamically upon contact. As reported in Table 2, the
measured dihedral angles deviate from the analytical value with
≤ 2% error, while the edge angles deviate with ≤ 5% error, which
testifies to the efficacy of our framework.

Curvature of Partition Surface. When two bubbles with different
radii — the larger being 𝑅1 and the smaller being 𝑅2 — form a
double-bubble, the smaller bubble will protrude into the larger one,
creating a spherical partition surface with radius 𝑅𝑃 =

𝑅1𝑅2
𝑅1−𝑅2

and
curvature 𝜅𝑃 = 1

𝑅𝑃
.This is due to the three-way balance of Young-

Laplace pressures and air pressures, which is handled naturally by
our algorithm. We validate with 6 testing setups, where one bubble
has a fixed radius 𝑅1 = 0.05m, and the other one has a varying radius
𝑅2 among {0.4𝑅1, 0.5𝑅1, 0.6𝑅1, 0.7𝑅1, 0.8𝑅1, 0.9𝑅1}. As showcased
in Figure 12, the smaller 𝑅2 is, the more curved the partition surface
becomes. The numerical results are documented in Table 3 and
plotted on the top-left of Figure 13, as they conform well to the
analytical values with ≤ 3.5% error.

Surface Area Minimization. The standard double-bubble, shown
in Figure 22, is a minimal surface with the steady-state surface area
𝑎 given by: 𝑎 = 27𝜋 ( 𝑉̂9𝜋 )

2
3 with 𝑉 being the enclosed volume of

each region. We verify our method’s ability to recover this with two
bubbles of radius 0.05m, initially separated, that are dynamically

Table 2. Numerical results to validate multi-MELP’s adherence to Plateau’s
laws. The pairs are labeled corresponding to Figure 11.

Plateau Border Testing
Set-up Double-Bubble Triple-Bubble
Pairs 1—2 1—3 2—3 1—2 1—3 2—3
Angle 118.62 122.30 119.06 120.84 118.96 120.20
Error 1.167% 1.917% 0.833% 0.7% 0.867% 0.167%
Set-up Quadruple-Bubble
Pairs 1—2 1—3 1—4 2—3 2—4 3—4
Angle 106.26 107.82 114.74 113.52 110.74 103.99
Error 2.93% 1.51% 4.81% 3.70% 1.16% 5.00%

Fig. 11. Left: in a double and a triple-bubble, three pieces of lamellae meet
at ≈ 120◦ angles along the border. Right: in a quadruple bubble, 6 partition
surfaces (highlighted) form 4 borders (red arrows) meeting at ≈ 109◦ angles.

fused into a double-bubble via contact. The initial surface area would
be 𝑎 = 0.0628m2 and the expected final surface area would be
𝑎 = 0.0594m2. As reflected in Figure 13, before the merge occurs at
𝑡 ≈ 3s, the total area oscillates around 𝑎, which then stabilizes to 𝑎
with periodic oscillation.

Drainage under Gravity. When a piece of thin film is placed ver-
tically, gravitation creates a tendency for the fluid to flow down-
wards. Near the bottom where fluid amasses, more surfactant will
occupy the fluid-air interface, creating a Marangoni acceleration to
counteract the gravitational acceleration, eventually reaching an
equilibrium. The steady-state thickness profile is derived by Couder
et al. [1989] as 𝜂 (𝑧) = 𝜂0𝑒

− 𝜌𝑔𝜂0𝑧
2(𝜎0−𝜎 ) where 𝜂0 is the film thickness

when laid flat. Setting 𝜂0 = 400𝑛𝑚, we verify our method’s corre-
spondence to the analytical solution on the top-right of Figure 13.
Additionally, the exponential thickness variation creates Newton’s
interference fringes with gradually thinning color stripes towards
the bottom, which is depicted on the left of Figure 16.

6.2 Comparison with Single-Layer Particle Method
As with the previously proposed single-layer particle method [Wang
et al. 2021], MELP is also connectivity-free and hence shares the
convenience in handling codimension transitions and simulating
complex scenes like thin film bursting. However, the separation of
tasks with our bi-layer design ensures that the simulation domain
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Fig. 12. Double-bubbles with different size ratios. The smaller the red bubble
is, the more it protrudes into the larger, blue one.

Table 3. The partition surface curvature: analytical values vs. our experi-
mental values. The † symbol represents the ground truth.

Curvature 𝜅𝑃 of the Partition Surface
𝑅1 (m) 𝑅2 (m) 𝑅𝑃 † (m) 𝜅𝑃 † ( 1

m ) 𝜅𝑃 ( 1
m ) Error

0.05 0.02 0.033 30 28.98 3.41%
0.05 0.025 0.05 20 20.17 0.84%
0.05 0.03 0.075 13.33 13.12 1.57%
0.05 0.035 0.117 8.57 8.34 2.64%
0.05 0.04 0.2 5 4.85 2.99%
0.05 0.045 0.45 2.22 2.28 2.64%

is uniformly discretized regardless of the flow dynamics, offering
enhanced numerical stability which in turn allows for the adoption
of real-world parameters infeasible for the single-layer model.
We demonstrate this with a simple set-up depicted on the right

of Figure 16: a circular thin film is initialized with spatially-varying
thickness 𝜂 (top-left circle), which tends to be evened out via the
Marangoni effect. The simulation is carried out for 5s, and the vari-
ance of 𝜂 is plotted on the left of Figure 14. Using real-world surface
tension parameters, the MELP simulation quickly converges, with
its variance approaching the anticipated value of 0. The end result is
a spatially-uniform thickness field indicated by the uniform, green
color (top-right circle). Using the method of Wang et al. [2021], the
variance blows up even with CFL number = 0.033, as the dynam-
ics is too numerically demanding for its explicit SPH solver. This
is reflected on the bottom-left circle in which the color/thickness
field is highly noisy. To obtain stability, we need to reduce the sur-
face tension parameter to 0.1× the real-world value (bottom-right
circle). However, this numerical compromise alters the dynamic
characteristics, turning nimble and rapid flows into slowly oscillat-
ing compression waves, significantly degrading the visual realism.
As depicted in Figure 15, both algorithms simulate the same config-
uration with the same external force. Using real-world parameters,
the MELP method responds to the external force acutely, developing
multiple vortices that together create an intricate, swirling color
palette; the single-layer method, in comparison, offers motion that is
visibly more damped, creates coarser flow details, and displays slow,
sweeping longitudinal waves uncharacteristic of thin film fluids.

Fig. 13. Top-left: curvatures of the partition surface for double-bubbles of
different size ratios compared to analytical values. Top-right: thickness
profile under gravity compared to analytical values. Bottom: the evolving
surface area of two bubbles as they merge into a double-bubble.

Fig. 14. Comparison with Wang et al. [2021]. Left: test of convergence to
equilibrium thickness. Right: comparison of computational cost.

Another reason forMELP’s improved visual performance over the
method of Wang et al. [2021] is the dramatically increased number
of particles being simulated, at a comparable or lower computa-
tional cost. As elaborated in Table 4, for Figure 15, MELP advects
∼ 700000 L particles driven by ∼ 7000 E particles, providing a
significant resolution boost over the ∼ 40000 particles in the single-
layer model. This can be attributed to the decoupling between the
advection resolution and the dynamics resolution. Indeed, a single
MELP iteration is still almost 8 times as costly, but with the large
step size that it supports, it eventually yields a speed-up of over
40%, as illustrated on the right of Figure 14. Consequently, using
comparable computational resources, our proposed method outputs
simulation sequences with over 5000000 particles against those with
at most 170000 particles in Wang et al. [2021].
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Fig. 15. Comparison of the simulated flow quality of our proposed MELP method (top) and Wang et al. [2021] (bottom).

Fig. 16. Left: Newton’s interference fringes under gravity. Right: comparison
with Wang et al. [2021]: top-left: initial set-up; top-right: converged result
of MELP; bottom-left: diverged result of Wang et al. [2021], bottom-right:
converged result of Wang et al. [2021] with reduced parameters.

6.3 Examples
The detailed specifications of all the examples simulated by our
proposed system, including the computational resources used, are
provided in Table 5. Photorealistic rendering is carried out in Hou-
dini with meshes reconstructed from the simulated particles. The
color is computed from thin film interference using ColorPy [Kness
2008] with CIE Standard Illuminant D65. For physical fidelity we
limit the CFL number to be strictly less than 1, which does not reflect
the numerical capacity of our model. For dynamic scenes involving
multiple bubbles, we are limited to CFL number = 0.33 due to the
explicit handling of the multi-region interaction.

Giant Bubble. As depicted in Figure 19, a deformed bubble is ini-
tialized by applying displacement mapping to a sphere of radius
0.1m, using 2-octave Perlin noise with frequency = 5 and scale
= 0.06. The thickness field is also initialized with Perlin noise, man-
ifesting in the initial, smooth color gradient. The flow is driven by a
heat source below the bubble that creates an upward motion. Conse-
quently, the bubble displays a golden tint at the bottom (𝜂 ≈ 350nm)
and a green tint at the top (𝜂 ≈ 500nm). An external force later
punctures the bubble from the right, causing the thin film to retract
under the rim surface tension. The bursting, which takes place in
a smaller timescale than the deformation or flow, is simulated at a
15× slow motion, which is handled automatically by our program.

Deforming Rectangle with Black Spots. As depicted in Figure 17,
we initialize a rectangular thin film with length = 0.16m and height
= 0.09m. A constant thickness gradient is initially imposed, with
thickness 𝜂 ≈ 500nm at the top and 𝜂 ≈ 250nm at the bottom, which
is the slightly perturbed using Perlin noise. Such a configuration
creates the Rayleigh-Taylor instability that causes the turbulent flow.
An out-of-plane sweeping force is applied to prompt the deforma-
tion. Black spots are seeded periodically at the bottom.

Deforming Half Bubble. As depicted in Figure 6, a half-bubble
of radius 0.05m is initialized, with the initial thickness variation
generated in the same way as the giant bubble. The flow is driven by
a heat source located below the half bubble. The gentle deformation
is propelled by a horizontal sweeping wind. Black spots are seeded at
the bottom boundary periodically, similar to the rectangle example.

Bubbles of Different Sizes. As shown in Figure 21, a bubble of
radius 0.025m, another one of radius 0.05m, and a half bubble of
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radius 0.1m are simulated, in order to verify our system’s ability to
handle large size differences. The two bubbles are put into contact
first, forming a double-bubble, with the smaller one protruding
into the larger one. Afterwards, an external acceleration drives the
double-bubble into the half bubble. The downwards momentum
causes the double-bubble to slide down the half bubble. As it slides
down, it also tilts counter-clockwise, which decreases the angle
it forms with the half bubble. The sliding motion is counteracted
by the surface tension’s tendency to restore 120◦ angles, and the
system gradually settles into an equilibrium.

Dynamic Reorganization of 4 Bubbles. It is known that the three-
way Plateau border is the only stable equilibrium for multiple thin
films to convene. However, unstable equilibriums exist — for in-
stance, when four bubbles meet at a cross shape to create an edge
that joins four surfaces with dihedral angles of 90◦ each. Such an
unstable equilibrium should morph into a stable Plateau border
given a small perturbation. With this experiment, we test our sys-
tem’s ability to recreate this phenomenon. As depicted in Figure 20,
we initialize four bubbles in a rectangular formation, with initial
velocities driving them to the center. Upon contact, they naturally
form 4 partition surfaces, meeting along the central edge at 90◦
angles. However, the surface tension is slightly varied among the
four bubbles, causing a small asymmetry in the force balance. Un-
der this perturbation, a new partition surface is gradually pulled
out from the initial edge, developing into two Plateau borders with
≈ 120◦ angles. Once this new configuration stabilizes, we delete one
of the partition surfaces to have the right two bubbles merge into a
single one, which is later punctured from the top-right. The momen-
tum caused by the thin film retraction is coupled to the dynamics
computation of the remaining double-bubble.

Rayleigh-Taylor Instability on a Double-Bubble. As depicted in
Figure 1, two bubbles of radius 0.5m are initially separated and
aligned vertically. The top one has thickness 𝜂 ≈ 500nm and the
bottom one has 𝜂 ≈ 250nm, as they are tinted purple and blue
reflecting their respective thickness values. With initial velocities
towards the center, two bubbles collide and develop into a double-
bubble with a shared surface in between. At the same time, material
transfer between both bubbles begins. As fluid is transferred from
top to bottom under gravity, Rayleigh-Taylor instability is created,
and the thinner fluid in the lower region is propelled to the upper
one in exchange. Eventually, the bottom region becomes thick and
the top region becomes thin, causing the tints to reverse, where the
lower region appears purple and the upper one appears blue.

Foam Mountain. This example puts to test our system’s caliber
in stably handling bubble clusters or foams at a much larger scale.
As depicted in Figure 18, three hundred bubbles, whose radii are
randomly selected between 0.008m to 0.012m, are poured down from
five "faucets" of bubbles located above. Bubbles that land within
the container gradually build up a honeycomb structure — a foam
mountain. Bubbles that collide with the container are automatically
deleted. Once the bubbles have stopped pouring, and the cluster
stabilized, we sporadically delete bubbles at random. The remaining
bubbles reorganize by contracting inwards to fill the gaps.

Fig. 17. Different frames of a deforming rectangular film with black spots.

Fig. 18. 300 bubbles falling into a container, forming a foam mountain.

Cyclones on 13 Bubbles. As shown in Figure 9, 13 bubbles with
radii from 0.0435m to 0.06m, and thickness from 400nm to 600nm
are initialized. Their centroids are initialized by FCC packing with
uniform random offsets. Under initial velocities towards the center,
these bubbles come into contact and spontaneously settle into stable
Plateau borders. A heat source is deployed at the bottom, causing
fluid to flow from the bottom to the top, which manifests in the
stratification of color, with the thinnest region at the bottom being
dark gold (≈ 180 nm) and the thickest region at the top being purple
(≈ 550nm). This heat-driven convection gradually develops into
"cyclones" on the bubble surfaces. The bottom row of Figure 9 docu-
ments the reorganization process — one partition surface between
two bubbles is deleted, creating a bubble that is larger than all the
others. The bubbles around it reorganize and merge to achieve a
new equilibrium.
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Fig. 19. The flow, deformation, and bursting of a giant bubble, similar to the experiment done in Wang et al. [2021] Figure 5.

Fig. 20. Four bubbles merge, reorganize from an unstable equilibrium to a
stable one, and eventually disintegrate.

7 DISCUSSION AND LIMITATIONS
We present a novel, mesh-free framework to tackle the multifac-
eted computational challenges in simulating incompressible flow
on dynamically deforming thin films and topologically adapting
foams. Using two collaborative particle sets, we devise a concise and
coherent numerical framework to expressively discretize thin film
volumes, robustly track moving interfaces, efficiently solve the dy-
namic PDEs and conveniently perform topological evolutions. Our
method marries traditional particle simulation techniques like SPH
with ideas from the level-set theory, arbitrary Lagrangian-Eulerian
simulation, and Particle-In-Cell methods, to create a stable, efficient
and versatile simulation system yielding state-of-the-art realism.
Furthermore, we propose an innovative perspective for modeling
non-manifold junctions, featuring one-sided representations of the
inner surfaces, which is simple to implement and predictable to run,
creating results both visually plausible and numerically accurate.
The main limitations of our approach are as follows: 1) the cou-

pling of multiple regions near the junctions is carried out via explicit
force computations, which limits the step size and can cause insta-
bility in aggressive settings, 2) the modeling of the flow dynamics
on the partition surfaces and multi-junctions can be improved with
more accurate physics e.g. incorporating the influence of the junc-
tion curvature, 3) the coupling between the ideal gas equation and
the thin film fluid equations is not momentum-conserving, which

can cause drifting artifacts, and 4) the current framework does not
support the physical interaction between thin films and solids.

Our proposed method opens up new possibilities in tackling dy-
namic problems on topologically evolving, non-manifold geometries.
Example applications include spider webs, cosmic webs, porous ma-
terials, metamaterial structures, etc.One immediate future challenge
is to apply the MELP framework to simulate codimension-two-
dominant physical systems featuring filament structures and their
junctions. The coupling between codimension-one and codimension-
two structures (e.g. the interaction between rims and thin films),
is another important problem that can be addressed in our future
work. We also plan to incorporate implicit representations such as
level-sets into MELP, so as to create flexible moving-surface solvers
for handling large-scale, topologically-complicated phenomena.
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Fig. 21. Interaction among bubbles of different sizes, showcasing our system’s ability to restore the equilibrium states.

Table 4. Performance comparison between the single-layer method in Wang et al. [2021] and MELP.

MELP vs. [Wang et al. 2021]: Computational Cost
Name Real Parameter CFL Number Number of Particles Time/Iter (s) Iter/Frame Time/Frame (s)

[Wang et al. 2021] Equilibrium ✓ 0.033 4200 0.07 55.9 3.91
[Wang et al. 2021] Equilibrium ✗ 0.1 4200 0.07 3.8 0.27

MELP Equilibrium ✓ 0.99 16800 L + 1050 E 0.33 1.06 0.35
[Wang et al. 2021] Flow ✗ 0.1 40000 0.47 24.91 11.71

MELP Flow ✓ 0.99 693900 L + 6900 E 3.1 2.25 6.98

Table 5. The catalog of experiments with the MELP method. [A] represents a computer with AMD Ryzen(TM) ThreadRipper 3990X, and [B] represents a
computer with Intel(R) Core(TM) i9-9980XE.

MELP: Catalog of Examples
Name CFL number Number of E Number of L Ratio Time/Iter (s) Using Depicted In
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Two Bubbles Contact 0.99 20480 0 - 0.72 A Figure 22

Bubbles of Different Sizes 0.33 33280 0 - 1.32 A Figure 21
Dynamic Reorganization of Four Bubbles 0.99 40960 0 - 1.45 A Figure 20

R-T Instability on a Double-Bubble 0.99 81924 4772266 1:58 55.7 A Figure 1
Foam Mountain 0.33 192311 0 - 9.1 A Figure 18

Cyclones on 13 Bubbles 0.99 133146 2129946 1:16 13.3 A Figure 9
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Fig. 22. Formation and evolution of a double-bubble. Top: photorealistic rendering, bottom: particle view.
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A DERIVATION OF THE MOMENTUM EQUATION
Since the transportation of physical quantities on a moving surface
𝑆𝐵 is independent of the velocity field outside 𝑆𝐵 , we may as well
assume that the surface 𝑆𝐵 is immersed in a continuous 3D veloc-
ity field. Assuming 𝑆𝛿 is an arbitrary Lagrangian material surface
element on 𝑆𝐵 , the physical quantity defined on 𝑆𝛿 satisfies the
following transportation equation [Wu et al. 2006]

d
d𝑡

∫
𝑆𝛿

𝐹d𝑆 =

∫
𝑆𝛿

(
D𝐹
D𝑡 + n · B · n𝐹

)
d𝑆, (29)

where 𝐹 is either a scalar or a vector, and B = I(∇ · 𝒖) − (∇𝒖)𝑇
is the divergence-free surface-deformation tensor with I being the
identity matrix.
Setting 𝐹 = 𝜌𝜂 in Equation 29 and using the mass conservation:

d
d𝑡

∫
𝑆𝛿

𝜌𝜂d𝑆 = 0, (30)

we obtain ∫
𝑆𝛿

(
D𝜌𝜂
D𝑡 + n · B · n𝜌𝜂

)
d𝑆 = 0. (31)

From the classical Newton’s second law, the rate of change of
fluid momentum of a material surface element 𝑆𝛿 must be balanced
by the total body force 𝒇𝐿 exerted over 𝑆𝛿 and tangential stress Π
exerted on its boundary 𝜕𝑆𝛿 . Assigning 𝐹 = 𝜌𝜂𝒖 in Equation 29, the
integral momentum balance reads∫

𝑆𝛿

(
D𝜌𝜂𝒖
D𝑡 + n · B · n𝜌𝜂𝒖

)
d𝑆 =

∫
𝑆𝛿

𝜌𝜂𝒇𝐿d𝑆 +
∫
𝜕𝑆𝛿

𝜌𝜂Πn𝜕d𝑙,

(32)
where n𝜕 is the unit normal of 𝜕𝑆𝛿 .

Subtracting Equation 31 multiplied by 𝒖 from Equation 32 and
using Stokes’ theorem, we obtain∫

𝑆𝛿

(
D𝒖
D𝑡 − 𝒇𝐿 + ∇𝑠Π

)
d𝑆 = 0. (33)

Since 𝑆𝛿 is arbitrarily selected, Equation 33 can be converted into
the differential form of Equation 3.

B IISPH WITH JACOBI ITERATIONS
To solve Equation 14 using Jacobi iterations, we need to compute

its right-hand side (RHS) and the diagonal terms of the left-hand
side (LHS), which express how the 𝑖th term of the LHS is related to Γ𝑖 .
We consider each of the three terms on the LHS independently and
sum up the diagonal terms for each. For the first term, the diagonal
terms are simply:

(𝑎𝑖𝑖 )1 = − 1
Δ𝑡Γ∗

𝑖

. (34)

For the second term on the LHS, we write out its SPH formulation:

(Δ𝑡 𝑅𝑇
𝜌
(∇ 1

𝜂∗
)𝑖 ) · ∇Γ𝑖 (35)

= (Δ𝑡 𝑅𝑇
𝜌
(∇ 1

𝜂∗
)𝑖 ) · (

∑︁
𝑗 ∈N(𝑖)

𝑎 𝑗 (Γ𝑗 − Γ𝑖 )∇𝑊𝑖 𝑗 ) . (36)

The diagonal coefficients would be:

(𝑎𝑖𝑖 )2 =
∑︁

𝑗 ∈N(𝑖)
−𝑎 𝑗∇𝑊𝑖 𝑗 · (Δ𝑡

𝑅𝑇

𝜌
(∇ 1

𝜂∗
)𝑖 ) . (37)

For the third term on the LHS, which involves the Laplacian operator
∇2, we write out the SPH formulation of ∇2 = ∇ · ∇:

∇2Γ =
∑︁

𝑗 ∈N(𝑖)
𝑎 𝑗 (∇Γ𝑗 − ∇Γ𝑖 ) · ∇𝑊𝑖 𝑗 (38)

=
∑︁

𝑗 ∈N(𝑖)
𝑎 𝑗 (

∑︁
𝑘∈N( 𝑗)

𝑎𝑘 (Γ𝑘 − Γ𝑗 )∇𝑊𝑗𝑘 (39)

−
∑︁

𝑗 ∈N(𝑖)
𝑎 𝑗 (Γ𝑗 − Γ𝑖 )∇𝑊𝑖 𝑗 ) · ∇𝑊𝑖 𝑗 . (40)

By the symmetry of neighbor searching (if 𝑖 is a neighbor of 𝑗 , 𝑗 is
a neighbor of 𝑖), one of the 𝑘 will be 𝑖 , so setting 𝑘 ← 𝑖 we express
the diagonal coefficients of the third term as:

(∇2Γ)𝑖𝑖 =
∑︁

𝑗 ∈N(𝑖)
𝑎 𝑗 (𝑎𝑖∇𝑊𝑗𝑖 (41)

−
∑︁

𝑗 ∈N(𝑖)
−𝑎 𝑗∇𝑊𝑖 𝑗 ) · ∇𝑊𝑖 𝑗 (42)

=
∑︁

𝑗 ∈N(𝑖)
𝑎 𝑗 (−𝑎𝑖∇𝑊𝑖 𝑗 (43)

−
∑︁

𝑗 ∈N(𝑖)
−𝑎 𝑗∇𝑊𝑖 𝑗 ) · ∇𝑊𝑖 𝑗 (44)

= −
∑︁

𝑗 ∈N(𝑖)
𝑎 𝑗 (−𝑎𝑖∇𝑊𝑖 𝑗 (45)

−
∑︁

𝑗 ∈N(𝑖)
−𝑎 𝑗∇𝑊𝑖 𝑗 ) · ∇𝑊𝑖 𝑗 (46)

(𝑎𝑖𝑖 )3 = (Δ𝑡 𝑅𝑇
𝜌

1
𝜂∗
) · (∇2Γ)𝑖𝑖 . (47)

Finally,
𝑎𝑖𝑖 = (𝑎𝑖𝑖 )1 + (𝑎𝑖𝑖 )2 + (𝑎𝑖𝑖 )3 . (48)

Once the diagonal terms have been derived, the rest of the iterative
process is analogous to the original algorithm [Ihmsen et al. 2013].
In this derivation, we use 𝑖 and 𝑗 to represent the 𝑖th and 𝑗 th E
particle in a MELP system.
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