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Abstract: We propose a data-driven method to automatically generate feedback
controllers for soft multicopters featuring deformable materials, non-conventional
geometries, and asymmetric rotor layouts, to deliver compliant deformation and
agile locomotion. Our approach coordinates two sub-systems: a physics-inspired
network ensemble that simulates the soft drone dynamics and a custom LQR con-
trol loop enhanced by a novel online-relinearization scheme to control the neural
dynamics. Harnessing the insights from deformation mechanics, we design a de-
composed state formulation whose modularity and compactness facilitate the dy-
namics learning while its measurability readies it for real-world adaptation. Our
method is painless to implement, and requires only conventional, low-cost gadgets
for fabrication. In a high-fidelity simulation environment, we demonstrate the ef-
ficacy of our approach by controlling a variety of customized soft multicopters to
perform hovering, target reaching, velocity tracking, and active deformation.

Keywords: Soft Robotics, Deformation Mechanics, Data-driven control, LQR,
Physics-informed Machine Learning

1 Introduction

Making a drone’s body soft opens up brand new horizons to advance its maneuverability, safety, and
functionalities. The intrinsic property of soft materials to deform and absorb energy during collision
allows safe human-machine interactions [1, 2, 3]. In circumscribed environments, soft drones can
naturally deform their bodies to travel through gaps and holes, making them effective for emergency
rescues. Moreover, the ability to perform controlled deformation enables soft drones to perform
secondary functionalities apart from aerial locomotion, such as flapping wings, grasping objects,
and even operating machines, any additional mechanical parts.

Despite the various advantages that this promises, to date a reliable and practical algorithm that
controls soft drones to fly and deform has been lacking, due to multifaceted challenges. Unlike how
it is for rigid drones, which are fully defined by 12-dimensional state vectors, describing the state of
soft drones is far from trivial. Since a continuum body deforms in infinite DOFs, one needs to design
discrete representations both compact —— so that the underactuated control problem is feasible, and
measurable —— so that the controller can adjust to unmodelled errors. Even if such discretizations
are obtained, the dynamic interplay of these state variables cannot be derived analytically in closed-
form, as the dynamics in the full space is governed by complex PDEs. Finally, if one is to adopt
machine-learning methods to model the dynamics, a problem is posed by the complexity of soft body
simulation, which inevitably leads to scarce data, making brute-force learning an ill-fated avenue.

Bridging the deformation mechanics, deep learning, and optimal control, our method is so designed
to successfully overcome the abovementioned challenges. First, we adopt the polar decomposition
theorem to build a low-dimensional decomposed state space consisting of three geometric, latent
variables each representing rotation, translation, and deformation, which can be synthesized from
the readings of a set of onboard Inertial Measurement Units (IMUs). We define the interdependen-
cies of these three variables and learn them with lightweight neural networks, thereby learning a
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Figure 1: The 5-stage pipeline of our contorller generation system

neural simulator in a latent space on which the controller will be based. With automatic differen-
tiation, we then extract the numeric gradients of the learned system to be controlled with a Linear
Quadratic Regulator (LQR). Due to the fact that LQR requires the system to be linearized around
fixed points that are inaccessible, we extend it with a novel online-relinearization scheme that itera-
tively converges to the desired target, bringing robustness and convenience for human piloting.

As shown in Figure. 1, our system takes soft drone geometries as input, and returns functionals
that compute control matrices based on the drone’s current state. To the best of our knowledge, the
proposed approach is the first to control soft drones that are meant to deform significantly in flight;
we show that we can not only regulate such deformation for balanced locomotion, but also capitalize
on the deforming ability to perform various feats in the air.

2 Related Work

Multicopter Over the last few years, quadcopters have virtually dominated the commercial UAV
industry, thanks to their simple mechanical structures, optimized efficiency for hovering, and easy-
to-control dynamics that has been extensively studied by [4, 5] and many more. Various methods
have been successfully developed to control quadcopters, including PD/PID [6], LQR [7, 8], differ-
ential flatness [9], sliding mode [10], and MPC [11] methods. Recent research explores the control
of non-conventional multicopter designs, including ones with extra rotors [12], asymmetric struc-
tures [7], articulated linkage [13], or with gliding wings [14]. The problem of controlling drones
fabricated with soft materials is still understudied.

Aerial Deformation Recent works have explored the potential of drones to actively deform in
flight [15]. [13, 16] achieve impressive results with their multi-linked drones in passing through
small openings or grasping objects, but the added mechanical components in their designs imply
additional cost, fabrication complexity, energy consumption, and maladroitness. [17] proposes a
lightweight, planar folding mechanism actuated by servo motors that is effective in controlling the
drones to travel through confined spaces, but the simplified mechanism limits the ability to perform
extra functionalities such as grasping. [18] propose the incorporation of a cable-actuated soft gripper
with a rigid quadcopter to achieve load manipulation. While previous works add additional actuators
to control deformation, we control deformation jointly with locomotion using rotors only.

Data-driven Soft Robot Control The modeling and control of soft robots is a challenging
problem due to the high DOFs and the non-linear dynamics [1], which together make closed-form
solutions unfeasible to be derived [19], and therefore making data-driven approaches favorable.
[20, 21, 22], and many more, use deep reinforcement learning to train neural network controllers
for soft robots. [23, 24] marries machine learning with control theory, applying MPC or PD control
methods on models learned from data. [19] propose the possibility of end-to-end supervised learning
with a differentiable soft-body simulator, although their current design does not facilitate feedback
mechanism in real-life due to the assumption of full state measurement.

3 Methodology

Overview The workflow of our proposed system is given in Figure. 2. We start with the IMU
sensor readings, which are position, orientation and their rates of change at multiple locations of
the drone’s body, which will be processed to form the current state vector x as the concatenation of
the three decomposed latent variables s, e, and p. This vector, along with the previously applied
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Figure 2: Method overview

actuation u will be passed into the three trained
network modules as inputs. Then we extract
the numeric gradients to form the Jacobian ma-
trices, which will be used to assemble the ma-
trices A and B representing the linearized dy-
namics. Then, A and B will be passed into the
LQR algorithm to form the control matrix K,
given which we simply need to pass in our cur-
rent state x, our next waypoint state xwp, and
the current actuation u, to obtain the new actua-
tion unext, which will be applied to the drone’s
rotors to complete the control loop. The xwp
will be computed by a Proportional-Derivative
(PD) controller given final goal state xgoal. The
control loop will operate at 100Hz while the re-
computation of K takes place at 10Hz.

Geometric State Decomposition Let Ω̂, Ω denote the volume of the drone’s undeformed and
deformed geometry, and let ẑ, z be their respective finite discretizations as particles forming the
solid body, with z = Φ(ẑ). We can always write:

z = RS(ẑ) + p, (1)

for some rotation matrix R, some position p ∈ R3, and some non-linear function S which reduces
to Φ when R = I and p = 0. In other words, we first define a local reference frame by the SO3
transformation resulting from R and p, and express the deformation in such a frame with S, thereby
decomposing the total transformation into a rigid component and a deformable component. In this
way, the rigid, SO3 component can be simulated side by side with the deformable component S, an
approach proposed by [25] and adopted by various works in the deformation simulation community
[26, 27, 28], taking advantage of the fact that the local-frame deformation S is much nicer to work
with than the world-frame deformation Φ. In this work, we adopt the same philosophy and learn
evolution rules for R, p, and S in juxtaposition.

Figure 3: Sensor scheme

Measurability Since our goal is to build feedback controllers for
z, i.e, (R,p, S), we would need to define R, p, and S in such a way
that they can be measured by sensors. In this work, we adopt the
following strategy. As shown in Figure. 3 we plant Inertial Measur-
ing Units (IMUs), which are compact, low-cost MEMS outputting
rotational and translational status, at the drone’s geometric center
and around its periphery, next to the propellers. For the local frame
rotation R, we use the Euler angles e = (e1, e2, e3) measured at
the geometric center. For local frame origin p, we average the po-
sitional measurements of all the IMUs to approximate the center of
mass. For the local frame deformation S, we obtain an approximate
representation s by computing a scalar angle difference si between
the Y -axis measured by each peripheral IMU and the Y -axis de-
fined by R, and concatenate these scalars together. In the shown case, each entry of s represents
how its associated wing is folded, where the sign indicates inward or outward and the magnitude
indicates the angle. Such a design of s facilitates interactive piloting since it is intuitive to describe
one’s desired deformation in terms of the bent angles. Since we have parameterized z with s, e and
p, controlling the dynamics of z now relegates to controlling the dynamics of (s, e,p).

Dynamic Coupling The drone’s body will be actuated by a set of m propellers, each providing
a scalar thrust along the normal of the surface it is planted on. Let u ∈ Rm denote the thrusts. The
second-order dynamics of z is given by the momentum conservation:

mz̈ = factuation(z,u) + fstress(z) + fdamping(ż) + mg (2)

where m represents the particle mass. We note here the translational and rotational symmetries of the
experienced forces. Since factuation depends on the rotors’ normal directions which are computed
locally with neighboring particles, it is unchanged when the whole of z is rotated or translated.
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The translational and rotational invariance of fstress and fdamping is based on the principle of
material frame-indifference in continuum mechanics, which states that the behavior of a material is
independent of the reference frame [29]. Combining the symmetry with the equality z = RS(ẑ)+p,
and ignoring the Coriolis forces resulting from the evolving R, we get that:

mz̈ ≈ Rfactuation(S(ẑ),u) + Rfstress(S(ẑ)) + Rfdamping( ˙S(ẑ)) + mg. (3)

Since ẑ is constant, S(ẑ) is a function of s, and we know R is a function of e, then the dynamics
coupling of s, e, and p are as follows. Since p̈ is the average of z̈, it depends on u, e, ė, s and ṡ.
Since R is measured in the local geometric center of z, ë depends on u, e, ė, s and ṡ as well. For s̈,
since it is measured by projecting z onto the local frame by left-multiplying R−1, the R component
in z̈ cancels out for s̈ and s̈ depends on u, s and ṡ only.

These interdependencies will be modelled by learned neural networks, in particular, we train net-
works {d,g,h} such that ṡnext= d(s, ṡ,u), ėnext= g(s, ṡ, e, ė,u), and ṗnext= h(s, ṡ, e, ė, ṗ,u).

Learning the Dynamics Training the networks d, g and h can be done in a relatively
straightforward fashion. The three networks share the same lightweight architecture consisting
of four residual blocks [30] featuring linear layers as previously explored by [31, 32]. The
three networks will be trained separately using the same reservoir of data samples of the form
{s, e,p, ṡ, ė, ṗ,u, ṡnext, ėnext, ṗnext} generated from Finite Element Method (FEM) simulation.
We use Adam optimizer and L1 loss for optimization, with hyperparameter details given in the sup-
plement. There are two techniques that we adopt that are worth reporting. First, for data generation,
we would apply a constant random thrust uniformly sampled in the range [−T max, T max], where
T max denotes a rotor’s max output thrust, to the drone’s rotors for 1s, before a new random thrust
is applied. The soft drone would be dancing and twisting in the air, but despite that, this method
leads to successful trainings, while generating data from a guiding controller, or switching random
control signals at every instant, would fail. Secondly, we’ve found that trainings converge much bet-
ter when we predict the next frame’s velocity using the current one, instead of directly predicting the
acceleration. Although this approach can lead to local minima for settling at the input, current veloc-
ity, that does not happen in our experiments and the acceleration can be convincingly reconstructed
from the two velocities, as we shall elaborate in the results section.

Controlling the Learned Dynamics Once the networks d, g and h are trained, the dynamics can
be expressed as

ẋ = f(x,u) =


ṡ
s̈
ė
ë
ṗ
p̈

 =


ṡ

1
α (d(s, ṡ,u)− ṡ)

ė
1
α (g(s, ṡ, e, ė,u)− ė)

ṗ
1
α (h(s, ṡ, e, ė, ṗ,u)− ṗ)

 , (4)

To control such learned dynamics, we summon the Linear Quadratic Regulator (LQR), a well-proven
method for controlling rigid drones. Since LQR requires a linear system, we will perform first-
order Taylor expansion around an operating point (x∗,u∗) with Jacobian matrices from automatic
differentiation which can be done with PyTorch. In particular, we write:

ẋ = f(x,u) ≈ f(x∗,u∗) + A(x− x∗) + B(u− u∗), (5)

where A = ∂f
∂x

∣∣
x∗,u∗ , and B = ∂f

∂u

∣∣
x∗,u∗ , as shown in Equation 6:

A =


O I O O O O

1
α
∂d
∂s

1
α (∂d∂ṡ − I) O O O O

O O O I O O
1
α
∂g
∂s

1
α
∂g
∂ṡ

1
α
∂g
∂e

1
α (∂g∂ė − I) O O

O O O O O I
1
α
∂h
∂s

1
α
∂h
∂ṡ

1
α
∂h
∂e

1
α
∂h
∂ė O 1

α (∂h∂ṗ − I)


x∗,u∗

B =


O

1
α
∂d
∂u
O

1
α
∂g
∂u
O

1
α
∂h
∂u


x∗,u∗

. (6)

If we make the assumption that for (x∗,u∗) and (x,u) close enough to each other,
f(x,u)− f(x∗,u∗) ≈ f(x− x∗,u− u∗), then we have:

˙(x− x∗) = f(x− x∗,u− u∗) ≈ A(x− x∗) + B(u− u∗). (7)
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Figure 4: 3D models used in our experiments

Once the linear system is obtained, LQR outputs the control matrix K and the control policy
u− u∗ = −K(x− x∗) that drives x to x∗ while keeping u close to u∗ by minimizing the cost
function

∫∞
0

(x− x∗)TQ(x− x∗) + (u− u∗)TR(u− u∗)dt. The Q and R matrices are cost ma-
trices used to manage the tradeoff between the two objectives. The optimization is done by solving
the Continuous-time Algebraic Riccati Equation with SciPy.

Online Relinearization Traditionally, the operating point, which is the state-actuation pair
(x∗,u∗) is chosen to be a fixed point such that f(x∗,u∗) = 0. For typical rigid drones, such
fixed points can be obtained trivially, and yet, for deformable drones, without iteratively testing
and optimizing with the neural dynamic system, it is generally not possible to know beforehand
which set of rotor input would exactly balance the internal stress, viscous damping, and exter-
nal gravity, or if such a balance exists. We see the fixed-point assumption as being overly strict
and seek to circumvent it. The purpose of assuming f(x∗,u∗) = 0 is to turn the affine Equa-
tion. 5 into a linear one which LQR recognizes. In that case, (x∗,u∗) is time-invariant and
indeed ẋ = ( ˙x− x∗) ≈ 0 + A(x− x∗) + B(u− u∗). Since in our case we cannot guarantee
f(x∗,u∗) = 0, then ( ˙x− x∗) 6= A(x− x∗) + B(u− u∗), so directly running LQR with A and B
would typically fail. However, by making the proximity assumption as in Equation. 7, we can obtain
the linear form locally. In other words, with (x∗,u∗) not being fixed points, we can still regulate
close-enough neighbor states to it.

Algorithm 1 Online Relinearizing LQR
Input: xcurr, xgoal, kp, kd, n, Q, R

1: ucurr ← 0
2: iter ← 0
3: while running do
4: update xcurr, ẋcurr
5: iter ← iter + 1
6: if iter mod n = 0 then
7: xwp ← kp·(xgoal−xcurr)+kd·ẋcurr
8: A,B← J (d,g,h,xcurr,ucurr)
9: K = LQR(A,B,Q,R)

10: uoper ← ucurr
11: end if
12: ucurr ← −K(xcurr − xwp) + uoper
13: end while

As in Algorithm. 1, our solution is built upon
this observation. We initialize our drone with
arbitrary x, and u = 0. At each instant, we
will linearize around the current (x,u). We
run LQR with the linear system to obtain K.
In practice, we don’t want to attract neigh-
boring state to current state, but rather drive
the current state to our goal state. Our strat-
egy is that if we want to reach a state xwp
from xcurr, then we will pretent to be at
(xcurr − xwp) trying to reach xcurr, and
compute u = −K((xcurr−xwp)−xcurr) =
−K(−xwp). Given the current state xcurr
and the goal state xgoal, we calculate xwp
using a PD control: xwp = kp · (xgoal −
xcurr) + kd · ẋcurr. The control matrix will
be used for n timesteps before updated again.

4 Experiments and Evaluation

To test the efficacy of our method, we design a number of soft drone models in 2D and 3D featuring
asymmetrical structures and odd numbers of rotors, as depicted in Figure. 4. We conduct training on
each model individually and use the generated controllers to direct the models to perform hovering,
target reaching, velocity tracking, and active deformation.

Testing the Linearized Networks To verify the quality of our learned dynamics, we focus on two
aspects. First, since our model predicts the next frame’s velocity with the current velocity, rather
than the acceleration (which is what we ultimately want), we need to make sure that the network ac-
tually learns how the velocity evolves, instead of reproducing the current velocity. As seen in the left
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Figure 6: Active deformation while hovering

Figure 7: Top: obstacle avoidance; bottom: Target reaching

subfigure of Figure. 5, which overlays the actual acceleration and the predicted acceleration recon-
structed from the predicted velocity, the networks learn the evolution rules of velocity successfully.

Figure 5: Testing results of the trained networks

Secondly, since the LQR controller
relies on the Taylor-expanded version
of the learned networks, it is nec-
essary to verify how well the net-
works’ gradient matches that of the
actual dynamics. Since the ground-
truth gradient is difficult to obtain,
we test this by reproducing temporal
sequences using the linearized ver-
sion as in Equation. 5 relinearized at
20Hz. As shown in the right subfigure, even with error accumulation, the linearized evolution se-
quence (Jacobian Matrix Update) keeps up with the ground truth for over a minute, showing the
linearized neural network can reliably approximate the real dynamics locally.

Aerial Deformation Our method successfully controls the drones to deform into specified con-
figurations while hovering or tracking a velocity. The first experiment instructs the flower drone to
maintain its location and orientation while deforming into two different configurations: first with
lateral petals raised and axial petals flat, then with lateral petals flat and axial petals raised, as shown
in Figure. 6. In the middle subfigure, the pitch of all eight petals are controlled as expected in a
smooth manner: petals 1, 3, 5, 7 will rise first while petals 2 , 4 , 6 , 8 stay still, before the roles are
gradually switched. The right subfigure shows that this is done while maintaining precise control of
balance and position. Ever since the initial drop in the−Y direction immediately after release, other
rotational and translational movements are contained within ±3◦ and ±5cm.

The second experiment combines velocity tracking with aerial deformation in an obstacle avoid-
ance scenario. As shown in the top of Figure. 7, three concrete blocks form a gap that is nar-
rower than the star drone’s body along the Z direction. Here, we instruct the drone to fold
up two wings by increasing their associated angles, and at the same time maintaining a for-
ward and upward velocity in the (+X,+Y ) direction. It is also crucial to limit the deviation
along the Z direction in order to not crush into the blocks. As one sees in the first subfigure

6



Figure 9: Left to right: ours, LQR, geometry-updating LQR, neural controller drive the drone to
reach coordinate (3, 3, 3) from (0, 0, 0), plotted are the time-varying (x, y, z) coordinates

Figure 8: Obstacle avoidance performance

of Figure. 8, our controller increases
the wing pitch by over 73◦, reduc-
ing its width for over 30%. As seen
in the second subfigure, it does so
while maintaining a steady velocity
in the (+X,+Y ) direction, and de-
viating for less than 5cm in the Z-
axis throughout the entire sequence,
thus leading to the successful object
avoidance as depicted in the bottom
of Figure. 7.

SOTA Comparison We compare our method with three different controllers: traditional LQR,
geometry-updating LQR, and a neural network controller trained end-to-end using the strategy pro-
posed by [19]. Our metrics will base on locomotion, since existing controllers for soft drone de-
formation is unavailable. The first candidate computes an LQR control matrix using the relevant
quantities —— fixed point, rotor position, rotor orientation, and rotational inertia, calculated from
the drone’s rest shape. The second recomputes the control matrix at every timestep with the relevant
quantities updated based on the deformation, with further details given in the supplement. The third
takes our trained network dynamic system as a differentiable simulator to train another network
controller. We instruct all controllers to direct the flower drone to travel from position (0, 0, 0) to
(3, 3, 3). As depicted in Figure. 9, our method (left) successfully drives the (x, y, z) coordinates of
the drone to the target within 7% error, while the other controllers fail due to the fragility of the soft
drone dynamics. As shown in the table below, we compare their performance numerically with three
metrics: final error, thrust usage, and the survival time before illegal configurations are encountered,
which shows that our method excels the other candidates by far.

Target Reaching
metrics ours LQR Geometry-updating LQR Neural Controller

survival time (s) 20.0 0.67 0.69 0.19
final error (m) 0.099 29.744 14.989 23.454

thrust usage (N) 26740 90596 61947 179996

Figure 10: Convergence with-
out decomposition

Ablation Testing: State Decomposition The state decompo-
sition is helpful for defining a local frame in which deformation
can be expressed compactly as scalars. In this experiment, we train
without decomposing and feed the network with the concatenated
vector of the position, center orientation, and peripheral orienta-
tions. As displayed in Figure. 10, the validation loss is unable to
converge successfully, signifying that the network fails to learn the
correct patterns. This can be due to the fact that such unprocessed
states double the size of the decomposed version, and also that the
evolution rules of the position and orientation are highly unalike,
thus demanding the network to evolve into multi-modal behaviors.

Ablation Testing: Online Relinearization We show the importance of the online relinearing
mechanism by testing the controller performance where the input targets (xgoal,ugoal) deviates
from a fixed point (x∗,u∗) by different margins. We first obtain a fixed point by trial-and-error and
then fine-tune it with gradient descent using our learned networks. Then, we keep the goal location
untouched, and pollute the rest of the fixed point by adding uniform random noise proportional to
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Figure 11: Left 2: The online relinearization scheme provides excelling robustness to non-fixed
targets; Right 2: Control performance and final error under different relinearization timestep n

each state variable by 10%, 20%, 30%, 40%, and 80%. We direct the rod drone to translate for 2
units along the +X direction. The results are depicted in the left 2 subfigures of Figure. 11. The
first subfigure shows the results without online relinearization, where the control quality deteriorates
significantly when over 20% noise is added, and start to generate NANs after 40% noise is added.
The second subfigure shows the results with online relinearization, in which the controller performs
steadily even with 80% noise added. The significance is that during deployment the pilot only
needs to input the target configuration without worrying about the hard-to-compute fixedness of
such configuration, thereby making our control system feasible for human piloting.

Effect of Relinearization Frequency The parameter n controls the relinearization frequency
100
n Hz. The more often the system is linearized the more accurate the linear approximation is.

And also, since we set a new waypoint at each linearization, whose distance away is inversely
proportional to n, frequent linearzation sets many adjacent waypoints while infrequent linearization
sets long-term, sparse waypoints. In this experiment, we test the performance of 9 different values
of n: {1, 2, 5, 10, 20, 30, 40, 50, 100}, and show that it is not the case that larger n implies better
performance. As shown in the right two subfigures of Figure. 11, [5, 20] is clearly the sweet-spot
of this parameter, where smaller n leads to overshoots, and larger n insufficient actuation.

5 Discussion and Conclusion

We propose a computational system to generate controllers for soft multicopters that jointly controls
the locomotion and active deformation, without relying on extra mechanical parts. Our method takes
advantage of a physics-inspired decomposed state space, and train neural networks to represent the
dynamics. We control the neural dynamics system using an LQR controller enhanced with a novel
online relinearization scheme. We use our method to successfully generate controllers for a variety
of soft multicopters to perform hovering, target reaching, velocity tracking, and active deformation.

Sim2Real Transfer Our method is well-suited for real-world adaptations. First, we limit the in-
terfacing between the simulator and the learning system strictly to sensor readings, so we make sure
that no unrealistic benefit is gained from experimenting virtually. Secondly, we form a straightfor-
ward guideline for sensor deployment, featuring accessible gadgets with easy installation. Thirdly,
the computation of LQR optimization and neural network evaluation can be realistically carried out
in real-time by onboard computers, as previously explored by [33, 34]. Finally, being data-driven,
our method betters the analytic approaches for Sim2Real adaptation, since it learns from data which
contain the unmodelled nuances of the real world. The main challenge for Sim2Real transfer would
be the experimental designs to generate meaningful data using the fabricated drones.

Limitations With our approach there are several limitations. First, the sensor placement requires
human design, and there lacks a mechanism to tell, before training, if a sensing scheme would
work. Secondly, every drone requires a separate training with no knowledge transfer. Thirdly, we
use dual rotors with counter-rotation to cancel the spinning torque effects, which complicates the
manufacturing process. Finally, the current control scheme is ineffective for aggressive maneuvers.

In the future, we plan to build an automated system for optimizing sensor locations as well as a
unified neural dynamics platform that facilitates knowledge transfer, and to evaluate our approach
on real-world soft multicopters.
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